Distilbert-base-uncased-emotion
Model description:
Distilbert is created with knowledge distillation during the pre-training phase which reduces the size of a BERT model by 40%, while retaining 97% of its language understanding. It's smaller, faster than Bert and any other Bert-based model.
Distilbert-base-uncased finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
Model Performance Comparision on Emotion Dataset from Twitter:
Model | Accuracy | F1 Score | Test Sample per Second |
---|---|---|---|
Distilbert-base-uncased-emotion | 93.8 | 93.79 | 398.69 |
Bert-base-uncased-emotion | 94.05 | 94.06 | 190.152 |
Roberta-base-emotion | 93.95 | 93.97 | 195.639 |
Albert-base-v2-emotion | 93.6 | 93.65 | 182.794 |
How to Use the model:
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
Output:
[[
{'label': 'sadness', 'score': 0.0006792712374590337},
{'label': 'joy', 'score': 0.9959300756454468},
{'label': 'love', 'score': 0.0009452480007894337},
{'label': 'anger', 'score': 0.0018055217806249857},
{'label': 'fear', 'score': 0.00041110432357527316},
{'label': 'surprise', 'score': 0.0002288572577526793}
]]
"""
Dataset:
Training procedure
Eval results
{
'test_accuracy': 0.938,
'test_f1': 0.937932884041714,
'test_loss': 0.1472451239824295,
'test_mem_cpu_alloc_delta': 0,
'test_mem_cpu_peaked_delta': 0,
'test_mem_gpu_alloc_delta': 0,
'test_mem_gpu_peaked_delta': 163454464,
'test_runtime': 5.0164,
'test_samples_per_second': 398.69
}
Reference:
- Downloads last month
- 52,430
Model tree for bhadresh-savani/distilbert-base-uncased-emotion
Dataset used to train bhadresh-savani/distilbert-base-uncased-emotion
Spaces using bhadresh-savani/distilbert-base-uncased-emotion 51
Evaluation results
- Accuracy on emotiontest set verified0.927
- Precision Macro on emotiontest set verified0.888
- Precision Micro on emotiontest set verified0.927
- Precision Weighted on emotiontest set verified0.927
- Recall Macro on emotiontest set verified0.879
- Recall Micro on emotiontest set verified0.927
- Recall Weighted on emotiontest set verified0.927
- F1 Macro on emotiontest set verified0.883
- F1 Micro on emotiontest set verified0.927
- F1 Weighted on emotiontest set verified0.927