license: mit
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: SuperAligned-Jawade
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.59
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SuperAligned-Jawade
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 90.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SuperAligned-Jawade
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.81
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SuperAligned-Jawade
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.17
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SuperAligned-Jawade
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.82
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SuperAligned-Jawade
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.2
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=bhavinjawade/SuperAligned-Jawade
name: Open LLM Leaderboard
SOLAR-10B-OrcaDPO-Jawade
Overview
This model card is instruction finetuned version of upstage/SOLAR-10.7B-Instruct-v1.0
model. Trained on the Intel DPO Orca dataset using LoRA. Though it should be noted SOLAR-10.7B paper states that the
original model for alignment was trained on Intel ORCA DPO pairs. Retraining using DPO and LoRA shows slight (<1%) improvement on OpenLLM Leaderboard benchmarks against SOLAR 10.7B-Instruct
and significant over SOLAR 10.7B
How to Use This Model
To use the model bhavinjawade/SOLAR-10B-OrcaDPO-Jawade
, follow these steps:
Import and Load the Model and Tokenizer Begin by importing the model and tokenizer. Load them using the
from_pretrained
method.from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade") tokenizer = AutoTokenizer.from_pretrained("bhavinjawade/SOLAR-10B-OrcaDPO-Jawade")
Format the Prompt Format the chat input as a list of messages, each with a role ('system' or 'user') and content.
message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "Is the universe real? or is it a simulation? whats your opinion?"} ] prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
Create a Pipeline Set up a pipeline for text generation with the loaded model and tokenizer.
pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer )
Generate Text Use the pipeline to generate a sequence of text based on the prompt. You can adjust parameters like temperature and top_p for different styles of responses.
sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text'])
This setup allows you to utilize the capabilities of the bhavinjawade/SOLAR-10B-OrcaDPO-Jawade model for generating responses to chat inputs.
License
- Type: MIT License
- Details: This license permits reuse, modification, and distribution for both private and commercial purposes under the terms of the MIT License.
Model Details
- Model Name: SOLAR-10.7B-Instruct-v1.0
- Organization: Upstage
- Training Dataset: Intel/orca_dpo_pairs
- Technique Used: LoRA (Low-Rank Adaptation)
Contact Information
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 70.86 |
AI2 Reasoning Challenge (25-Shot) | 71.59 |
HellaSwag (10-Shot) | 90.58 |
MMLU (5-Shot) | 60.81 |
TruthfulQA (0-shot) | 69.17 |
Winogrande (5-shot) | 83.82 |
GSM8k (5-shot) | 49.20 |