SetFit with google-bert/bert-large-uncased
This is a SetFit model trained on the bhujith10/multi_class_classification_dataset dataset that can be used for Text Classification. This SetFit model uses google-bert/bert-large-uncased as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: google-bert/bert-large-uncased
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 6 classes
- Training Dataset: bhujith10/multi_class_classification_dataset
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhujith10/bert-large-uncased-setfit_finetuned")
# Run inference
preds = model("Title: On the isoperimetric quotient over scalar-flat conformal classes,
Abstract: Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n$ with
smooth boundary $\partial M$. Suppose that $(M,g)$ admits a scalar-flat
conformal metric. We prove that the supremum of the isoperimetric quotient over
the scalar-flat conformal class is strictly larger than the best constant of
the isoperimetric inequality in the Euclidean space, and consequently is
achieved, if either (i) $n\ge 12$ and $\partial M$ has a nonumbilic point; or
(ii) $n\ge 10$, $\partial M$ is umbilic and the Weyl tensor does not vanish at
some boundary point.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 23 | 145.8467 | 280 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.22 | - |
0.0138 | 50 | 0.3706 | - |
0.0276 | 100 | 0.2389 | - |
0.0414 | 150 | 0.1628 | - |
0.0551 | 200 | 0.1401 | - |
0.0689 | 250 | 0.1043 | - |
0.0827 | 300 | 0.1047 | - |
0.0965 | 350 | 0.098 | - |
0.1103 | 400 | 0.0931 | - |
0.1241 | 450 | 0.1002 | - |
0.1379 | 500 | 0.0837 | - |
0.1516 | 550 | 0.0673 | - |
0.1654 | 600 | 0.0709 | - |
0.1792 | 650 | 0.08 | - |
0.1930 | 700 | 0.0719 | - |
0.2068 | 750 | 0.0805 | - |
0.2206 | 800 | 0.059 | - |
0.2344 | 850 | 0.0957 | - |
0.2481 | 900 | 0.0614 | - |
0.2619 | 950 | 0.0887 | - |
0.2757 | 1000 | 0.0713 | - |
0.2895 | 1050 | 0.0734 | - |
0.3033 | 1100 | 0.0519 | - |
0.3171 | 1150 | 0.0802 | - |
0.3309 | 1200 | 0.0817 | - |
0.3446 | 1250 | 0.0665 | - |
0.3584 | 1300 | 0.0515 | - |
0.3722 | 1350 | 0.0764 | - |
0.3860 | 1400 | 0.0564 | - |
0.3998 | 1450 | 0.0512 | - |
0.4136 | 1500 | 0.052 | - |
0.4274 | 1550 | 0.0398 | - |
0.4411 | 1600 | 0.0473 | - |
0.4549 | 1650 | 0.0433 | - |
0.4687 | 1700 | 0.0621 | - |
0.4825 | 1750 | 0.0506 | - |
0.4963 | 1800 | 0.0395 | - |
0.5101 | 1850 | 0.0516 | - |
0.5238 | 1900 | 0.0431 | - |
0.5376 | 1950 | 0.037 | - |
0.5514 | 2000 | 0.0299 | - |
0.5652 | 2050 | 0.0398 | - |
0.5790 | 2100 | 0.0335 | - |
0.5928 | 2150 | 0.0438 | - |
0.6066 | 2200 | 0.0436 | - |
0.6203 | 2250 | 0.0345 | - |
0.6341 | 2300 | 0.0396 | - |
0.6479 | 2350 | 0.0381 | - |
0.6617 | 2400 | 0.0377 | - |
0.6755 | 2450 | 0.0287 | - |
0.6893 | 2500 | 0.0393 | - |
0.7031 | 2550 | 0.0309 | - |
0.7168 | 2600 | 0.0363 | - |
0.7306 | 2650 | 0.0347 | - |
0.7444 | 2700 | 0.0299 | - |
0.7582 | 2750 | 0.0305 | - |
0.7720 | 2800 | 0.0349 | - |
0.7858 | 2850 | 0.0385 | - |
0.7996 | 2900 | 0.0412 | - |
0.8133 | 2950 | 0.0336 | - |
0.8271 | 3000 | 0.0422 | - |
0.8409 | 3050 | 0.0249 | - |
0.8547 | 3100 | 0.0285 | - |
0.8685 | 3150 | 0.0258 | - |
0.8823 | 3200 | 0.0309 | - |
0.8961 | 3250 | 0.0246 | - |
0.9098 | 3300 | 0.0271 | - |
0.9236 | 3350 | 0.0285 | - |
0.9374 | 3400 | 0.0318 | - |
0.9512 | 3450 | 0.0287 | - |
0.9650 | 3500 | 0.0298 | - |
0.9788 | 3550 | 0.021 | - |
0.9926 | 3600 | 0.036 | - |
1.0 | 3627 | - | 0.1036 |
1.0063 | 3650 | 0.0257 | - |
1.0201 | 3700 | 0.02 | - |
1.0339 | 3750 | 0.0333 | - |
1.0477 | 3800 | 0.0339 | - |
1.0615 | 3850 | 0.0283 | - |
1.0753 | 3900 | 0.0233 | - |
1.0891 | 3950 | 0.0311 | - |
1.1028 | 4000 | 0.0296 | - |
1.1166 | 4050 | 0.0271 | - |
1.1304 | 4100 | 0.0321 | - |
1.1442 | 4150 | 0.0221 | - |
1.1580 | 4200 | 0.026 | - |
1.1718 | 4250 | 0.0283 | - |
1.1856 | 4300 | 0.0378 | - |
1.1993 | 4350 | 0.0225 | - |
1.2131 | 4400 | 0.0237 | - |
1.2269 | 4450 | 0.0254 | - |
1.2407 | 4500 | 0.0253 | - |
1.2545 | 4550 | 0.023 | - |
1.2683 | 4600 | 0.0265 | - |
1.2821 | 4650 | 0.0255 | - |
1.2958 | 4700 | 0.0278 | - |
1.3096 | 4750 | 0.0285 | - |
1.3234 | 4800 | 0.0234 | - |
1.3372 | 4850 | 0.0282 | - |
1.3510 | 4900 | 0.0197 | - |
1.3648 | 4950 | 0.0284 | - |
1.3785 | 5000 | 0.0326 | - |
1.3923 | 5050 | 0.0233 | - |
1.4061 | 5100 | 0.0386 | - |
1.4199 | 5150 | 0.0308 | - |
1.4337 | 5200 | 0.0218 | - |
1.4475 | 5250 | 0.0288 | - |
1.4613 | 5300 | 0.0251 | - |
1.4750 | 5350 | 0.0255 | - |
1.4888 | 5400 | 0.0261 | - |
1.5026 | 5450 | 0.0253 | - |
1.5164 | 5500 | 0.0313 | - |
1.5302 | 5550 | 0.0277 | - |
1.5440 | 5600 | 0.0252 | - |
1.5578 | 5650 | 0.0293 | - |
1.5715 | 5700 | 0.0334 | - |
1.5853 | 5750 | 0.0285 | - |
1.5991 | 5800 | 0.0269 | - |
1.6129 | 5850 | 0.0267 | - |
1.6267 | 5900 | 0.0313 | - |
1.6405 | 5950 | 0.0243 | - |
1.6543 | 6000 | 0.0301 | - |
1.6680 | 6050 | 0.0266 | - |
1.6818 | 6100 | 0.0276 | - |
1.6956 | 6150 | 0.0293 | - |
1.7094 | 6200 | 0.0291 | - |
1.7232 | 6250 | 0.031 | - |
1.7370 | 6300 | 0.0283 | - |
1.7508 | 6350 | 0.0238 | - |
1.7645 | 6400 | 0.0261 | - |
1.7783 | 6450 | 0.0196 | - |
1.7921 | 6500 | 0.034 | - |
1.8059 | 6550 | 0.0255 | - |
1.8197 | 6600 | 0.0231 | - |
1.8335 | 6650 | 0.0256 | - |
1.8473 | 6700 | 0.0207 | - |
1.8610 | 6750 | 0.0325 | - |
1.8748 | 6800 | 0.0238 | - |
1.8886 | 6850 | 0.0277 | - |
1.9024 | 6900 | 0.0239 | - |
1.9162 | 6950 | 0.0239 | - |
1.9300 | 7000 | 0.0227 | - |
1.9438 | 7050 | 0.0236 | - |
1.9575 | 7100 | 0.0216 | - |
1.9713 | 7150 | 0.0248 | - |
1.9851 | 7200 | 0.0244 | - |
1.9989 | 7250 | 0.0203 | - |
2.0 | 7254 | - | 0.1068 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.1.0+cu118
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
Inference API (serverless) has been turned off for this model.
Model tree for bhujith10/bert-large-uncased-setfit_finetuned
Base model
google-bert/bert-large-uncased