SetFit with google-bert/bert-large-uncased

This is a SetFit model trained on the bhujith10/multi_class_classification_dataset dataset that can be used for Text Classification. This SetFit model uses google-bert/bert-large-uncased as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhujith10/bert-large-uncased-setfit_finetuned")
# Run inference
preds = model("Title: On the isoperimetric quotient over scalar-flat conformal classes,
Abstract: Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n$ with
smooth boundary $\partial M$. Suppose that $(M,g)$ admits a scalar-flat
conformal metric. We prove that the supremum of the isoperimetric quotient over
the scalar-flat conformal class is strictly larger than the best constant of
the isoperimetric inequality in the Euclidean space, and consequently is
achieved, if either (i) $n\ge 12$ and $\partial M$ has a nonumbilic point; or
(ii) $n\ge 10$, $\partial M$ is umbilic and the Weyl tensor does not vanish at
some boundary point.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 23 145.8467 280

Training Hyperparameters

  • batch_size: (4, 4)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.22 -
0.0138 50 0.3706 -
0.0276 100 0.2389 -
0.0414 150 0.1628 -
0.0551 200 0.1401 -
0.0689 250 0.1043 -
0.0827 300 0.1047 -
0.0965 350 0.098 -
0.1103 400 0.0931 -
0.1241 450 0.1002 -
0.1379 500 0.0837 -
0.1516 550 0.0673 -
0.1654 600 0.0709 -
0.1792 650 0.08 -
0.1930 700 0.0719 -
0.2068 750 0.0805 -
0.2206 800 0.059 -
0.2344 850 0.0957 -
0.2481 900 0.0614 -
0.2619 950 0.0887 -
0.2757 1000 0.0713 -
0.2895 1050 0.0734 -
0.3033 1100 0.0519 -
0.3171 1150 0.0802 -
0.3309 1200 0.0817 -
0.3446 1250 0.0665 -
0.3584 1300 0.0515 -
0.3722 1350 0.0764 -
0.3860 1400 0.0564 -
0.3998 1450 0.0512 -
0.4136 1500 0.052 -
0.4274 1550 0.0398 -
0.4411 1600 0.0473 -
0.4549 1650 0.0433 -
0.4687 1700 0.0621 -
0.4825 1750 0.0506 -
0.4963 1800 0.0395 -
0.5101 1850 0.0516 -
0.5238 1900 0.0431 -
0.5376 1950 0.037 -
0.5514 2000 0.0299 -
0.5652 2050 0.0398 -
0.5790 2100 0.0335 -
0.5928 2150 0.0438 -
0.6066 2200 0.0436 -
0.6203 2250 0.0345 -
0.6341 2300 0.0396 -
0.6479 2350 0.0381 -
0.6617 2400 0.0377 -
0.6755 2450 0.0287 -
0.6893 2500 0.0393 -
0.7031 2550 0.0309 -
0.7168 2600 0.0363 -
0.7306 2650 0.0347 -
0.7444 2700 0.0299 -
0.7582 2750 0.0305 -
0.7720 2800 0.0349 -
0.7858 2850 0.0385 -
0.7996 2900 0.0412 -
0.8133 2950 0.0336 -
0.8271 3000 0.0422 -
0.8409 3050 0.0249 -
0.8547 3100 0.0285 -
0.8685 3150 0.0258 -
0.8823 3200 0.0309 -
0.8961 3250 0.0246 -
0.9098 3300 0.0271 -
0.9236 3350 0.0285 -
0.9374 3400 0.0318 -
0.9512 3450 0.0287 -
0.9650 3500 0.0298 -
0.9788 3550 0.021 -
0.9926 3600 0.036 -
1.0 3627 - 0.1036
1.0063 3650 0.0257 -
1.0201 3700 0.02 -
1.0339 3750 0.0333 -
1.0477 3800 0.0339 -
1.0615 3850 0.0283 -
1.0753 3900 0.0233 -
1.0891 3950 0.0311 -
1.1028 4000 0.0296 -
1.1166 4050 0.0271 -
1.1304 4100 0.0321 -
1.1442 4150 0.0221 -
1.1580 4200 0.026 -
1.1718 4250 0.0283 -
1.1856 4300 0.0378 -
1.1993 4350 0.0225 -
1.2131 4400 0.0237 -
1.2269 4450 0.0254 -
1.2407 4500 0.0253 -
1.2545 4550 0.023 -
1.2683 4600 0.0265 -
1.2821 4650 0.0255 -
1.2958 4700 0.0278 -
1.3096 4750 0.0285 -
1.3234 4800 0.0234 -
1.3372 4850 0.0282 -
1.3510 4900 0.0197 -
1.3648 4950 0.0284 -
1.3785 5000 0.0326 -
1.3923 5050 0.0233 -
1.4061 5100 0.0386 -
1.4199 5150 0.0308 -
1.4337 5200 0.0218 -
1.4475 5250 0.0288 -
1.4613 5300 0.0251 -
1.4750 5350 0.0255 -
1.4888 5400 0.0261 -
1.5026 5450 0.0253 -
1.5164 5500 0.0313 -
1.5302 5550 0.0277 -
1.5440 5600 0.0252 -
1.5578 5650 0.0293 -
1.5715 5700 0.0334 -
1.5853 5750 0.0285 -
1.5991 5800 0.0269 -
1.6129 5850 0.0267 -
1.6267 5900 0.0313 -
1.6405 5950 0.0243 -
1.6543 6000 0.0301 -
1.6680 6050 0.0266 -
1.6818 6100 0.0276 -
1.6956 6150 0.0293 -
1.7094 6200 0.0291 -
1.7232 6250 0.031 -
1.7370 6300 0.0283 -
1.7508 6350 0.0238 -
1.7645 6400 0.0261 -
1.7783 6450 0.0196 -
1.7921 6500 0.034 -
1.8059 6550 0.0255 -
1.8197 6600 0.0231 -
1.8335 6650 0.0256 -
1.8473 6700 0.0207 -
1.8610 6750 0.0325 -
1.8748 6800 0.0238 -
1.8886 6850 0.0277 -
1.9024 6900 0.0239 -
1.9162 6950 0.0239 -
1.9300 7000 0.0227 -
1.9438 7050 0.0236 -
1.9575 7100 0.0216 -
1.9713 7150 0.0248 -
1.9851 7200 0.0244 -
1.9989 7250 0.0203 -
2.0 7254 - 0.1068

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.45.2
  • PyTorch: 2.1.0+cu118
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for bhujith10/bert-large-uncased-setfit_finetuned

Finetuned
(116)
this model

Dataset used to train bhujith10/bert-large-uncased-setfit_finetuned