structured_conservation_gc_t5_freeze

This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4536
  • Accuracy: 0.8144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 384 0.6716 0.6307
0.6757 2.0 768 0.6227 0.6930
0.6527 3.0 1152 0.5848 0.7304
0.626 4.0 1536 0.5338 0.7564
0.626 5.0 1920 0.4740 0.7907
0.5956 6.0 2304 0.4631 0.8
0.5789 7.0 2688 0.4585 0.8093
0.5672 8.0 3072 0.4483 0.8152
0.5672 9.0 3456 0.4607 0.8121
0.5643 10.0 3840 0.4537 0.8156
0.5619 11.0 4224 0.4535 0.8125
0.5537 12.0 4608 0.4487 0.8148
0.5537 13.0 4992 0.4529 0.8136
0.5532 14.0 5376 0.4577 0.8132
0.5488 15.0 5760 0.4500 0.8160
0.5545 16.0 6144 0.4528 0.8152
0.5449 17.0 6528 0.4535 0.8144
0.5449 18.0 6912 0.4536 0.8144

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
60.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bif02/structured_conservation_gc_t5_freeze

Base model

google-t5/t5-small
Finetuned
(1674)
this model