whisper_pfe / README.md
bika5's picture
End of training
7c0c3b7 verified
|
raw
history blame
1.88 kB
---
language:
- en
license: apache-2.0
base_model: openai/whisper-small.en
tags:
- generated_from_trainer
datasets:
- bika5/pfedrx
metrics:
- wer
model-index:
- name: Whisper pfe - bika5
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: pfedrx
type: bika5/pfedrx
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 13.88888888888889
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper pfe - bika5
This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the pfedrx dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8293
- Wer: 13.8889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0001 | 1000.0 | 1000 | 0.7559 | 13.8889 |
| 0.0 | 2000.0 | 2000 | 0.8140 | 13.8889 |
| 0.0 | 3000.0 | 3000 | 0.8293 | 13.8889 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1