metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-small.en
tags:
- generated_from_trainer
datasets:
- bika5/pfedrax
metrics:
- wer
model-index:
- name: Whisper pfe - bika5
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: pfedrax
type: bika5/pfedrax
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 92.92035398230088
Whisper pfe - bika5
This model is a fine-tuned version of openai/whisper-small.en on the pfedrax dataset. It achieves the following results on the evaluation set:
- Loss: 3.6101
- Model Preparation Time: 0.006
- Wer: 92.9204
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
---|---|---|---|---|---|
0.0001 | 83.3333 | 1000 | 3.5216 | 0.006 | 92.9204 |
0.0 | 166.6667 | 2000 | 3.6101 | 0.006 | 92.9204 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1