layoutlm-funsd / README.md
blaackjack's picture
End of training
6b0009a verified
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7180
  • Answer: {'precision': 0.7269700332963374, 'recall': 0.8096415327564895, 'f1': 0.7660818713450291, 'number': 809}
  • Header: {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119}
  • Question: {'precision': 0.7881205673758865, 'recall': 0.8347417840375587, 'f1': 0.8107615139078888, 'number': 1065}
  • Overall Precision: 0.7338
  • Overall Recall: 0.7938
  • Overall F1: 0.7626
  • Overall Accuracy: 0.8036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7814 1.0 10 1.5919 {'precision': 0.015602836879432624, 'recall': 0.013597033374536464, 'f1': 0.01453104359313078, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.14666666666666667, 'recall': 0.09295774647887324, 'f1': 0.11379310344827587, 'number': 1065} 0.0797 0.0552 0.0652 0.3502
1.446 2.0 20 1.2482 {'precision': 0.15749235474006115, 'recall': 0.1273176761433869, 'f1': 0.14080656185919346, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.45069393718042366, 'recall': 0.5793427230046948, 'f1': 0.5069843878389482, 'number': 1065} 0.3559 0.3613 0.3586 0.5919
1.0955 3.0 30 0.9653 {'precision': 0.44740024183796856, 'recall': 0.4573547589616811, 'f1': 0.45232273838630804, 'number': 809} {'precision': 0.030303030303030304, 'recall': 0.008403361344537815, 'f1': 0.013157894736842105, 'number': 119} {'precision': 0.5621703089675961, 'recall': 0.7004694835680751, 'f1': 0.6237458193979933, 'number': 1065} 0.5107 0.5605 0.5344 0.7004
0.8413 4.0 40 0.8063 {'precision': 0.6070686070686071, 'recall': 0.7218788627935723, 'f1': 0.6595143986448335, 'number': 809} {'precision': 0.1111111111111111, 'recall': 0.05042016806722689, 'f1': 0.06936416184971099, 'number': 119} {'precision': 0.6669527896995708, 'recall': 0.7295774647887324, 'f1': 0.6968609865470853, 'number': 1065} 0.6268 0.6859 0.6550 0.7495
0.6708 5.0 50 0.7123 {'precision': 0.6703539823008849, 'recall': 0.7490729295426453, 'f1': 0.7075306479859895, 'number': 809} {'precision': 0.11458333333333333, 'recall': 0.09243697478991597, 'f1': 0.10232558139534885, 'number': 119} {'precision': 0.6787401574803149, 'recall': 0.8093896713615023, 'f1': 0.7383297644539615, 'number': 1065} 0.6515 0.7421 0.6939 0.7841
0.566 6.0 60 0.7005 {'precision': 0.6466466466466466, 'recall': 0.7985166872682324, 'f1': 0.7146017699115044, 'number': 809} {'precision': 0.13725490196078433, 'recall': 0.11764705882352941, 'f1': 0.12669683257918554, 'number': 119} {'precision': 0.7279151943462897, 'recall': 0.7737089201877935, 'f1': 0.7501137915339099, 'number': 1065} 0.6646 0.7446 0.7023 0.7826
0.4969 7.0 70 0.6764 {'precision': 0.6817691477885652, 'recall': 0.7812113720642769, 'f1': 0.7281105990783411, 'number': 809} {'precision': 0.21666666666666667, 'recall': 0.2184873949579832, 'f1': 0.21757322175732216, 'number': 119} {'precision': 0.7367521367521368, 'recall': 0.8093896713615023, 'f1': 0.7713646532438478, 'number': 1065} 0.6856 0.7627 0.7221 0.7950
0.4295 8.0 80 0.6735 {'precision': 0.7071823204419889, 'recall': 0.7911001236093943, 'f1': 0.7467911318553092, 'number': 809} {'precision': 0.21311475409836064, 'recall': 0.2184873949579832, 'f1': 0.21576763485477177, 'number': 119} {'precision': 0.7489397794741306, 'recall': 0.8291079812206573, 'f1': 0.78698752228164, 'number': 1065} 0.7022 0.7772 0.7378 0.7992
0.3774 9.0 90 0.6814 {'precision': 0.7023809523809523, 'recall': 0.8022249690976514, 'f1': 0.7489901904212348, 'number': 809} {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119} {'precision': 0.7639372822299652, 'recall': 0.8234741784037559, 'f1': 0.7925892453682785, 'number': 1065} 0.7115 0.7822 0.7452 0.8047
0.3678 10.0 100 0.6885 {'precision': 0.7193370165745856, 'recall': 0.8046971569839307, 'f1': 0.7596266044340723, 'number': 809} {'precision': 0.264, 'recall': 0.2773109243697479, 'f1': 0.27049180327868855, 'number': 119} {'precision': 0.7690972222222222, 'recall': 0.831924882629108, 'f1': 0.799278304014434, 'number': 1065} 0.7195 0.7878 0.7521 0.8050
0.3137 11.0 110 0.6976 {'precision': 0.7161572052401747, 'recall': 0.8108776266996292, 'f1': 0.7605797101449275, 'number': 809} {'precision': 0.27007299270072993, 'recall': 0.31092436974789917, 'f1': 0.2890625, 'number': 119} {'precision': 0.7719756309834639, 'recall': 0.8328638497652582, 'f1': 0.8012646793134598, 'number': 1065} 0.7175 0.7928 0.7533 0.8018
0.2983 12.0 120 0.6996 {'precision': 0.7108433734939759, 'recall': 0.8022249690976514, 'f1': 0.7537746806039489, 'number': 809} {'precision': 0.304, 'recall': 0.31932773109243695, 'f1': 0.31147540983606553, 'number': 119} {'precision': 0.7810283687943262, 'recall': 0.8272300469483568, 'f1': 0.8034655722754217, 'number': 1065} 0.7239 0.7868 0.7540 0.8029
0.2786 13.0 130 0.7114 {'precision': 0.7172949002217295, 'recall': 0.799752781211372, 'f1': 0.7562828755113968, 'number': 809} {'precision': 0.29838709677419356, 'recall': 0.31092436974789917, 'f1': 0.3045267489711935, 'number': 119} {'precision': 0.7814977973568282, 'recall': 0.8328638497652582, 'f1': 0.8063636363636365, 'number': 1065} 0.7270 0.7883 0.7564 0.8019
0.2632 14.0 140 0.7151 {'precision': 0.7256438969764838, 'recall': 0.8009888751545118, 'f1': 0.7614571092831962, 'number': 809} {'precision': 0.3064516129032258, 'recall': 0.31932773109243695, 'f1': 0.31275720164609055, 'number': 119} {'precision': 0.7858407079646018, 'recall': 0.8338028169014085, 'f1': 0.8091116173120729, 'number': 1065} 0.7331 0.7898 0.7604 0.8033
0.2668 15.0 150 0.7180 {'precision': 0.7269700332963374, 'recall': 0.8096415327564895, 'f1': 0.7660818713450291, 'number': 809} {'precision': 0.2992125984251969, 'recall': 0.31932773109243695, 'f1': 0.30894308943089427, 'number': 119} {'precision': 0.7881205673758865, 'recall': 0.8347417840375587, 'f1': 0.8107615139078888, 'number': 1065} 0.7338 0.7938 0.7626 0.8036

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Tokenizers 0.19.1