metadata
language:
- id
- ms
license: apache-2.0
tags:
- g2p
- text2text-generation
inference: false
ID G2P LSTM
ID G2P LSTM is a grapheme-to-phoneme model based on the LSTM architecture. This model was trained from scratch on a modified Malay/Indonesian lexicon.
This model was trained using the Keras framework. All training was done on Google Colaboratory. We adapted the LSTM training script provided by the official Keras Code Example.
Model
Model | #params | Arch. | Training/Validation data |
---|---|---|---|
id-g2p-lstm |
596K | LSTM | Malay/Indonesian Lexicon |
Training Procedure
Model Config
latent_dim: 256
num_encoder_tokens: 28
num_decoder_tokens: 32
max_encoder_seq_length: 24
max_decoder_seq_length: 25
Training Setting
batch_size: 64
optimizer: "rmsprop"
loss: "categorical_crossentropy"
learning_rate: 0.001
epochs: 100
How to Use
Tokenizers
g2id = {
' ': 27,
'-': 0,
'a': 1,
'b': 2,
'c': 3,
'd': 4,
'e': 5,
'f': 6,
'g': 7,
'h': 8,
'i': 9,
'j': 10,
'k': 11,
'l': 12,
'm': 13,
'n': 14,
'o': 15,
'p': 16,
'q': 17,
'r': 18,
's': 19,
't': 20,
'u': 21,
'v': 22,
'w': 23,
'y': 24,
'z': 25,
'’': 26
}
p2id = {
'\t': 0,
'\n': 1,
' ': 31,
'-': 2,
'a': 3,
'b': 4,
'd': 5,
'e': 6,
'f': 7,
'g': 8,
'h': 9,
'i': 10,
'j': 11,
'k': 12,
'l': 13,
'm': 14,
'n': 15,
'o': 16,
'p': 17,
'r': 18,
's': 19,
't': 20,
'u': 21,
'v': 22,
'w': 23,
'z': 24,
'ŋ': 25,
'ə': 26,
'ɲ': 27,
'ʃ': 28,
'ʒ': 29,
'ʔ': 30
}
import keras
import numpy as np
from huggingface_hub import from_pretrained_keras
latent_dim = 256
bos_token, eos_token, pad_token = "\t", "\n", " "
num_encoder_tokens, num_decoder_tokens = 28, 32
max_encoder_seq_length, max_decoder_seq_length = 24, 25
model = from_pretrained_keras("bookbot/id-g2p-lstm")
encoder_inputs = model.input[0]
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)
decoder_inputs = model.input[1]
decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3")
decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4")
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)
def inference(sequence):
id2p = {v: k for k, v in p2id.items()}
input_seq = np.zeros(
(1, max_encoder_seq_length, num_encoder_tokens), dtype="float32"
)
for t, char in enumerate(sequence):
input_seq[0, t, g2id[char]] = 1.0
input_seq[0, t + 1 :, g2id[pad_token]] = 1.0
states_value = encoder_model.predict(input_seq)
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, p2id[bos_token]] = 1.0
stop_condition = False
decoded_sentence = ""
while not stop_condition:
output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = id2p[sampled_token_index]
decoded_sentence += sampled_char
if sampled_char == eos_token or len(decoded_sentence) > max_decoder_seq_length:
stop_condition = True
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.0
states_value = [h, c]
return decoded_sentence.replace(eos_token, "")
inference("mengembangkannya")
Authors
ID G2P LSTM was trained and evaluated by Ananto Joyoadikusumo, Steven Limcorn, Wilson Wongso. All computation and development are done on AWS Sagemaker.
Framework versions
- Keras 2.8.0
- TensorFlow 2.8.0