Wav2Vec2-Large-XLSR-53-Moroccan-Darija
wav2vec2-large-xlsr-53 new model
- Fine-tuned on 57 hours of labeled Darija Audios extracted from MDVC (https://ijeecs.iaescore.com/index.php/IJEECS/article/view/35709) which contains more than 1000 hours of Moroccan Darija "ary".
- Fine-tuning is ongoing 24/7 to enhance accuracy.
- We are consistently adding data to the model every day (We prefer not to add all MDVC Corpus at once as we are trying to standardize more and more the way we write the Moroccan Darija).
Training Loss | Validation | Loss Wer |
---|---|---|
0.121300 | 0.103430 | 0.084904 |
Usage
The model can be used directly as follows:
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens = torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
Output: ูุงูุช ููุง ูุงุฏ ุงูุณูุฏ ูุงุฏุง ู ุง ูุงููุด ุจุญุงูู
email: [email protected]
BOUMEHDI Ahmed
- Downloads last month
- 763
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for boumehdi/wav2vec2-large-xlsr-moroccan-darija
Spaces using boumehdi/wav2vec2-large-xlsr-moroccan-darija 2
Evaluation results
- Test WERself-reported0.085