|
https://colab.research.google.com/drive/1rT472vEOPjYCKdZ1CEg0IWm-h0dployN?usp=sharing |
|
|
|
```python |
|
|
|
!pip install datasets transformers evaluate wandb py7zr sentencepiece huggingface_hub rouge_score accelerate |
|
|
|
import wandb |
|
wandb.login() |
|
|
|
|
|
from huggingface_hub import interpreter_login |
|
|
|
interpreter_login() |
|
|
|
from datasets import interleave_datasets, load_dataset |
|
|
|
samsum_dataset = load_dataset("bragovo/dsum_en", split="train") |
|
samsum_ru_dataset = load_dataset("bragovo/dsum_ru", split="train") |
|
|
|
dataset = interleave_datasets([samsum_dataset, samsum_ru_dataset]) |
|
dataset = dataset.train_test_split(test_size=0.2) |
|
|
|
from transformers import AutoTokenizer |
|
|
|
checkpoint = "cointegrated/rut5-base-multitask" |
|
# checkpoint = "t5-small" |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint, legacy=False) |
|
|
|
prefix = "summarize: " |
|
|
|
def preprocess_function(examples): |
|
inputs = [prefix + doc for doc in examples["dialogue"]] |
|
|
|
model_inputs = tokenizer(inputs) |
|
labels = tokenizer(text_target=examples["summary"]) |
|
|
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
tokenized_dataset = dataset.map(preprocess_function, batched=True) |
|
|
|
from transformers import DataCollatorForSeq2Seq |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) |
|
|
|
import evaluate |
|
|
|
rouge = evaluate.load("rouge") |
|
|
|
import numpy as np |
|
|
|
def compute_metrics(eval_pred): |
|
predictions, labels = eval_pred |
|
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) |
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) |
|
|
|
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions] |
|
result["gen_len"] = np.mean(prediction_lens) |
|
|
|
return {k: round(v, 4) for k, v in result.items()} |
|
|
|
|
|
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) |
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="bragovo/flux-mt5-base-multitask-model", |
|
evaluation_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=4, |
|
per_device_eval_batch_size=4, |
|
weight_decay=0.01, |
|
save_total_limit=3, |
|
num_train_epochs=4, |
|
predict_with_generate=True, |
|
fp16=True, |
|
push_to_hub=True, |
|
) |
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["test"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
trainer.train() |
|
trainer.push_to_hub() |
|
|
|
``` |