|
from typing import Any, Dict, List, Optional, Union |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNormContinuous |
|
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.embeddings import TimestepEmbedding, get_timestep_embedding |
|
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock |
|
|
|
|
|
try: |
|
from diffusers.models.embeddings import FluxPosEmbed as EmbedND |
|
except: |
|
from diffusers.models.transformers.transformer_flux import rope |
|
class EmbedND(nn.Module): |
|
def __init__(self, theta: int, axes_dim: List[int]): |
|
super().__init__() |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
|
|
def forward(self, ids: torch.Tensor) -> torch.Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], |
|
dim=-3, |
|
) |
|
return emb.unsqueeze(1) |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class Timesteps(nn.Module): |
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1,time_theta=10000): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.flip_sin_to_cos = flip_sin_to_cos |
|
self.downscale_freq_shift = downscale_freq_shift |
|
self.scale = scale |
|
self.time_theta=time_theta |
|
|
|
def forward(self, timesteps): |
|
t_emb = get_timestep_embedding( |
|
timesteps, |
|
self.num_channels, |
|
flip_sin_to_cos=self.flip_sin_to_cos, |
|
downscale_freq_shift=self.downscale_freq_shift, |
|
scale=self.scale, |
|
max_period=self.time_theta |
|
) |
|
return t_emb |
|
|
|
class TimestepProjEmbeddings(nn.Module): |
|
def __init__(self, embedding_dim, time_theta): |
|
super().__init__() |
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0,time_theta=time_theta) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
def forward(self, timestep, dtype): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) |
|
return timesteps_emb |
|
|
|
""" |
|
Based on FluxPipeline with several changes: |
|
- no pooled embeddings |
|
- We use zero padding for prompts |
|
- No guidance embedding since this is not a distilled version |
|
""" |
|
class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): |
|
""" |
|
The Transformer model introduced in Flux. |
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ |
|
|
|
Parameters: |
|
patch_size (`int`): Patch size to turn the input data into small patches. |
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. |
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. |
|
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. |
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. |
|
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. |
|
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 1, |
|
in_channels: int = 64, |
|
num_layers: int = 19, |
|
num_single_layers: int = 38, |
|
attention_head_dim: int = 128, |
|
num_attention_heads: int = 24, |
|
joint_attention_dim: int = 4096, |
|
pooled_projection_dim: int = None, |
|
guidance_embeds: bool = False, |
|
axes_dims_rope: List[int] = [16, 56, 56], |
|
rope_theta = 10000, |
|
time_theta = 10000 |
|
): |
|
super().__init__() |
|
self.out_channels = in_channels |
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim |
|
|
|
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope) |
|
|
|
|
|
self.time_embed = TimestepProjEmbeddings( |
|
embedding_dim=self.inner_dim,time_theta=time_theta |
|
) |
|
|
|
|
|
|
|
|
|
if guidance_embeds: |
|
self.guidance_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim) |
|
|
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) |
|
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
attention_head_dim=self.config.attention_head_dim, |
|
) |
|
for i in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
self.single_transformer_blocks = nn.ModuleList( |
|
[ |
|
FluxSingleTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=self.config.num_attention_heads, |
|
attention_head_dim=self.config.attention_head_dim, |
|
) |
|
for i in range(self.config.num_single_layers) |
|
] |
|
) |
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
controlnet_block_samples = None, |
|
controlnet_single_block_samples=None, |
|
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: |
|
""" |
|
The [`FluxTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
Input `hidden_states`. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): |
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
|
from the embeddings of input conditions. |
|
timestep ( `torch.LongTensor`): |
|
Used to indicate denoising step. |
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`): |
|
A list of tensors that if specified are added to the residuals of transformer blocks. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
hidden_states = self.x_embedder(hidden_states) |
|
|
|
timestep = timestep.to(hidden_states.dtype) |
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) |
|
else: |
|
guidance = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temb = self.time_embed(timestep,dtype=hidden_states.dtype) |
|
|
|
|
|
|
|
|
|
if guidance: |
|
temb+=self.guidance_embed(guidance,dtype=hidden_states.dtype) |
|
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if len(txt_ids.shape)==2: |
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
else: |
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
image_rotary_emb = self.pos_embed(ids) |
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] |
|
|
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
temb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
hidden_states = block( |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
output = self.proj_out(hidden_states) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|