Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: TitanML/tiny-mixtral
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 66d0c0f5db4f4b34_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/66d0c0f5db4f4b34_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: brixeus/8c049c38-799e-4c25-9b0d-dc981828a71a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/66d0c0f5db4f4b34_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 85b3f2f7-4fff-4f72-aae9-b1ea685e68d0
wandb_project: Gradients-On-Three
wandb_run: your_name
wandb_runid: 85b3f2f7-4fff-4f72-aae9-b1ea685e68d0
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

8c049c38-799e-4c25-9b0d-dc981828a71a

This model is a fine-tuned version of TitanML/tiny-mixtral on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 8.6341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 10.5513
10.5405 0.0027 9 10.5194
10.3621 0.0053 18 10.3098
10.0861 0.0080 27 9.9690
9.6303 0.0106 36 9.5659
9.2398 0.0133 45 9.2067
8.9913 0.0160 54 8.9664
8.8299 0.0186 63 8.8075
8.7077 0.0213 72 8.7092
8.6759 0.0240 81 8.6582
8.6467 0.0266 90 8.6378
8.5828 0.0293 99 8.6341

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for brixeus/8c049c38-799e-4c25-9b0d-dc981828a71a

Adapter
(144)
this model