Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-70m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 62fb9d7cd79067b3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/62fb9d7cd79067b3_train_data.json
  type:
    field_input: gpt4_explanations
    field_instruction: context
    field_output: outcome
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: brixeus/b048c862-0239-42ad-952d-fde565305928
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/62fb9d7cd79067b3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 52ea7159-1ba4-4749-bb70-7f020821bed3
wandb_project: Gradients-On-Three
wandb_run: your_name
wandb_runid: 52ea7159-1ba4-4749-bb70-7f020821bed3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

b048c862-0239-42ad-952d-fde565305928

This model is a fine-tuned version of EleutherAI/pythia-70m-deduped on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 102.8504

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0018 1 127.4583
533.4007 0.0166 9 127.3704
518.798 0.0332 18 126.8194
495.2701 0.0499 27 126.1574
494.6709 0.0665 36 124.9365
479.4452 0.0831 45 123.1090
470.8304 0.0997 54 120.0938
469.1343 0.1163 63 116.1484
459.6161 0.1330 72 110.4632
396.1999 0.1496 81 105.5722
408.5629 0.1662 90 103.2321
407.0931 0.1828 99 102.8504

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for brixeus/b048c862-0239-42ad-952d-fde565305928

Adapter
(259)
this model