Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: bigcode/starcoder2-3b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - dc64740e3d06f2d2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/dc64740e3d06f2d2_train_data.json
  type:
    field_instruction: question
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: brixeus/e3d9f68e-ddae-4356-abca-036887a2a2d6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 300
micro_batch_size: 8
mlflow_experiment_name: /tmp/dc64740e3d06f2d2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 54b16405-7735-4eb4-b439-c1cf71c50491
wandb_project: Gradients-On-Three
wandb_run: your_name
wandb_runid: 54b16405-7735-4eb4-b439-c1cf71c50491
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

e3d9f68e-ddae-4356-abca-036887a2a2d6

This model is a fine-tuned version of bigcode/starcoder2-3b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss
No log 0.0070 1 2.9027
8.5199 0.3509 50 1.7458
6.8311 0.7018 100 1.6745
7.4471 1.0526 150 1.5201
6.1462 1.4035 200 1.4512
6.1707 1.7544 250 1.4166
5.6218 2.1053 300 1.3941

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for brixeus/e3d9f68e-ddae-4356-abca-036887a2a2d6

Adapter
(347)
this model