File size: 2,214 Bytes
6bde91c
 
 
 
 
 
 
 
 
 
 
 
 
9252d50
 
 
 
 
 
53a64f4
6bde91c
53a64f4
 
 
6bde91c
 
 
 
 
 
 
 
 
 
 
 
229a4a7
6bde91c
 
53a64f4
6bde91c
53a64f4
6bde91c
53a64f4
6bde91c
53a64f4
6bde91c
53a64f4
6bde91c
53a64f4
6bde91c
4e5986b
53a64f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
language:
- en
library_name: transformers
base_model: []
tags:
- mergekit
- merge
- Yi
---

# **NOTE: THIS QUANTIZATION IS BROKEN**

See: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8-31bpw-exl2-fiction/discussions/4#65a5eb3aee220af178d28541


# Yi 34B Merge v8

A merge of several Yi 34B 200K models using the new DARE Ties method via mergekit, quantized with exllamav2 on ~300K tokens of a sci-fi story, a fantasy story, and a vicuna chat for optimal long context storywriting performance.

See the main model card: https://huggingface.co/brucethemoose/Yi-34B-200K-DARE-megamerge-v8

## Prompt template: Orca-Vicuna
```
SYSTEM: {system_message}
USER: {prompt}
ASSISTANT:
```
It might recognize ChatML, and possibly Alpaca-like formats. Raw prompting as described here is also effective: https://old.reddit.com/r/LocalLLaMA/comments/18zqy4s/the_secret_to_writing_quality_stories_with_llms/


## Running

24GB GPUs can run 3.1bpw Yi-34B-200K models at **75K context** with exllamav2, and performant UIs like [exui](https://github.com/turboderp/exui). I go into more detail in this [post](https://old.reddit.com/r/LocalLLaMA/comments/1896igc/how_i_run_34b_models_at_75k_context_on_24gb_fast/)


Being a Yi model, try running a lower temperature with 0.05+ MinP, a little repetition penalty, maybe mirostat with a low tau, and no other samplers. Yi tends to run "hot" by default, and it really needs a low temperature +  MinP to cull the huge vocabulary.

## Quantization Commands

First pass:
```
python /home/alpha/AI/exllamav2/convert.py --in_dir /home/alpha/FastModels/v8/v8 -o /home/alpha/FastModels/scratch -om /home/alpha/FastModels/v8meas.json --cal_dataset /home/alpha/Documents/stories.parquet -ml 32768 -mr 8 -ss 4096 -b 4.0 -hb 6 -nr

```

Second pass:
```
python /home/alpha/AI/exllamav2/convert.py --in_dir /home/alpha/FastModels/v8/v8 -o /home/alpha/FastModels/scratch -m /home/alpha/FastModels/v8meas.json --cal_dataset /home/alpha/Documents/stories.parquet -l 12288 -r 26 -ml 32768 -mr 8 -ss 4096 -b 4.0 -hb 6 -cf /home/alpha/FastModels/v8-exl2-4bpw-fiction -nr
```