SetFit with meedan/paraphrase-filipino-mpnet-base-v2

This is a SetFit model trained on the bsen26/eyeR-classification-multi-label-category2 dataset that can be used for Text Classification. This SetFit model uses meedan/paraphrase-filipino-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.5407

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bsen26/eyeR-category2-multilabel")
# Run inference
preds = model("Wrong coffee / no ketchup / cold fries. Ugh")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 18.3958 41

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0010 1 0.0919 -
0.0521 50 0.1443 -
0.1042 100 0.0682 -
0.1562 150 0.1043 -
0.2083 200 0.0653 -
0.2604 250 0.0136 -
0.3125 300 0.0025 -
0.3646 350 0.0195 -
0.4167 400 0.0073 -
0.4688 450 0.0115 -
0.5208 500 0.0045 -
0.5729 550 0.0052 -
0.625 600 0.0091 -
0.6771 650 0.0037 -
0.7292 700 0.0027 -
0.7812 750 0.0058 -
0.8333 800 0.0118 -
0.8854 850 0.0025 -
0.9375 900 0.0005 -
0.9896 950 0.0085 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.40.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
21
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for bsen26/eyeR-category2-multilabel

Finetuned
(3)
this model

Dataset used to train bsen26/eyeR-category2-multilabel

Evaluation results