QwQen-3B-LCoT-R1 / README.md
bunnycore's picture
Adding Evaluation Results (#1)
b6aed44 verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - bunnycore/QwQen-3B-LCoT
  - bunnycore/Qwen-2.5-3b-R1-lora_model-v.1
model-index:
  - name: QwQen-3B-LCoT-R1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 53.42
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 26.98
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 33.53
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.57
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 10.03
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 30.26
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
          name: Open LLM Leaderboard

When using the QwQen-3B-LCoT-R1 model, you might notice that it can sometimes produce repetitive outputs, especially in certain contexts or with specific prompts. This is a common behavior in language models, but don’t worry—it can be managed effectively by tweaking the model’s repetition parameters.

To reduce repetition, you can experiment with the following settings:

  • Repetition Penalty: This parameter discourages the model from repeating the same words or phrases by applying a penalty. A higher value (e.g., 1.0) will push the model to avoid repetition more aggressively.
  • Temperature: This controls the randomness of the output. Lowering the temperature (e.g., 0.7) makes the model more focused and less likely to repeat itself, though it may reduce creativity slightly.

System Prompt:

Think about the reasoning process in the mind first, then provide the answer.

The reasoning process should be wrapped within <think> </think> tags, then provide the answer after that, i.e., <think> reasoning process here </think> answer here.

Configuration

The following YAML configuration was used to produce this model:


base_model: bunnycore/QwQen-3B-LCoT+bunnycore/Qwen-2.5-3b-R1-lora_model-v.1
dtype: bfloat16
merge_method: passthrough
models:
  - model: bunnycore/QwQen-3B-LCoT+bunnycore/Qwen-2.5-3b-R1-lora_model-v.1
tokenizer_source: bunnycore/QwQen-3B-LCoT

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 25.97
IFEval (0-Shot) 53.42
BBH (3-Shot) 26.98
MATH Lvl 5 (4-Shot) 33.53
GPQA (0-shot) 1.57
MuSR (0-shot) 10.03
MMLU-PRO (5-shot) 30.26