metadata
library_name: transformers
tags:
- mergekit
- merge
base_model:
- bunnycore/QwQen-3B-LCoT
- bunnycore/Qwen-2.5-3b-R1-lora_model-v.1
model-index:
- name: QwQen-3B-LCoT-R1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.42
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.98
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 33.53
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.57
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.03
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.26
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1
name: Open LLM Leaderboard
When using the QwQen-3B-LCoT-R1 model, you might notice that it can sometimes produce repetitive outputs, especially in certain contexts or with specific prompts. This is a common behavior in language models, but don’t worry—it can be managed effectively by tweaking the model’s repetition parameters.
To reduce repetition, you can experiment with the following settings:
- Repetition Penalty: This parameter discourages the model from repeating the same words or phrases by applying a penalty. A higher value (e.g., 1.0) will push the model to avoid repetition more aggressively.
- Temperature: This controls the randomness of the output. Lowering the temperature (e.g., 0.7) makes the model more focused and less likely to repeat itself, though it may reduce creativity slightly.
System Prompt:
Think about the reasoning process in the mind first, then provide the answer.
The reasoning process should be wrapped within <think> </think> tags, then provide the answer after that, i.e., <think> reasoning process here </think> answer here.
Configuration
The following YAML configuration was used to produce this model:
base_model: bunnycore/QwQen-3B-LCoT+bunnycore/Qwen-2.5-3b-R1-lora_model-v.1
dtype: bfloat16
merge_method: passthrough
models:
- model: bunnycore/QwQen-3B-LCoT+bunnycore/Qwen-2.5-3b-R1-lora_model-v.1
tokenizer_source: bunnycore/QwQen-3B-LCoT
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 25.97 |
IFEval (0-Shot) | 53.42 |
BBH (3-Shot) | 26.98 |
MATH Lvl 5 (4-Shot) | 33.53 |
GPQA (0-shot) | 1.57 |
MuSR (0-shot) | 10.03 |
MMLU-PRO (5-shot) | 30.26 |