Wav2Vec2-Large-XLSR-Sundanese

Fine-tuned facebook/wav2vec2-large-xlsr-53 on the OpenSLR High quality TTS data for Sundanese. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset, load_metric, Dataset
from datasets.utils.download_manager import DownloadManager
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from pathlib import Path
import pandas as pd


def load_dataset_sundanese():
    urls = [
        "https://www.openslr.org/resources/44/su_id_female.zip",
        "https://www.openslr.org/resources/44/su_id_male.zip"
    ]
    dm = DownloadManager()
    download_dirs = dm.download_and_extract(urls)
    data_dirs = [ 
        Path(download_dirs[0])/"su_id_female/wavs",
        Path(download_dirs[1])/"su_id_male/wavs",
    ]
    filenames = [ 
        Path(download_dirs[0])/"su_id_female/line_index.tsv",
        Path(download_dirs[1])/"su_id_male/line_index.tsv",
    ]

    dfs = []
    
    dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"]))
    dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"]))
    
    for i, dir in enumerate(data_dirs):
        dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
    df = pd.concat(dfs)
    # df = df.sample(frac=1, random_state=1).reset_index(drop=True)
    dataset = Dataset.from_pandas(df)
    dataset = dataset.remove_columns('__index_level_0__')
    
    return dataset.train_test_split(test_size=0.1, seed=1)
    
dataset = load_dataset_sundanese()
test_dataset = dataset['test']

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated as follows or using the notebook.

import torch
import torchaudio
from datasets import load_dataset, load_metric, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets.utils.download_manager import DownloadManager
import re
from pathlib import Path
import pandas as pd


def load_dataset_sundanese():
    urls = [
        "https://www.openslr.org/resources/44/su_id_female.zip",
        "https://www.openslr.org/resources/44/su_id_male.zip"
    ]
    dm = DownloadManager()
    download_dirs = dm.download_and_extract(urls)
    data_dirs = [ 
        Path(download_dirs[0])/"su_id_female/wavs",
        Path(download_dirs[1])/"su_id_male/wavs",
    ]
    filenames = [ 
        Path(download_dirs[0])/"su_id_female/line_index.tsv",
        Path(download_dirs[1])/"su_id_male/line_index.tsv",
    ]

    dfs = []
    
    dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"]))
    dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"]))
    
    for i, dir in enumerate(data_dirs):
        dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
    df = pd.concat(dfs)
    # df = df.sample(frac=1, random_state=1).reset_index(drop=True)
    dataset = Dataset.from_pandas(df)
    dataset = dataset.remove_columns('__index_level_0__')
    
    return dataset.train_test_split(test_size=0.1, seed=1)
    
dataset = load_dataset_sundanese()
test_dataset = dataset['test']

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\%\β€˜\'\”_\οΏ½]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 6.19 %

Training

OpenSLR High quality TTS data for Sundanese was used for training. The script used for training can be found here and to evaluate it

Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cahya/wav2vec2-large-xlsr-sundanese

Spaces using cahya/wav2vec2-large-xlsr-sundanese 32

Evaluation results

  • Test WER on OpenSLR High quality TTS data for Sundanese
    self-reported
    6.190