whisper-tiny-id / README.md
cahya's picture
fine tuned on other datasets
8441926
metadata
language:
  - id
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - magic_data
  - titml
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Tiny Indonesian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 id
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 18.28368532693904

Whisper Tiny Indonesian

This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_11_0, magic_data, titml and google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2409
  • Wer: 18.2837

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4103 0.66 1000 0.3802 27.0497
0.2682 1.32 2000 0.3223 22.9365
0.2381 1.99 3000 0.2884 20.8245
0.1606 2.65 4000 0.2727 20.1928
0.1246 3.31 5000 0.2596 18.9984
0.1344 3.97 6000 0.2482 18.7540
0.0975 4.63 7000 0.2471 18.6388
0.0916 5.29 8000 0.2436 18.9615
0.0854 5.96 9000 0.2413 18.3114
0.0812 6.62 10000 0.2409 18.2837

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2