hindi_base_wav2vec2-audio-abuse-feature

This model is a fine-tuned version of Harveenchadha/hindi_base_wav2vec2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7202
  • Accuracy: 0.6694
  • Macro F1-score: 0.6693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1-score
6.6553 0.77 10 6.6322 0.0 0.0
6.5758 1.54 20 6.4417 0.5447 0.2151
6.3599 2.31 30 6.1486 0.5122 0.3621
6.0708 3.08 40 5.7751 0.5041 0.3351
5.8361 3.85 50 5.4662 0.5041 0.3351
5.5167 4.62 60 5.2127 0.5041 0.3351
5.289 5.38 70 4.9640 0.5041 0.3351
5.0266 6.15 80 4.7282 0.5041 0.3351
4.78 6.92 90 4.5006 0.5041 0.3351
4.6197 7.69 100 4.2787 0.5041 0.3351
4.3798 8.46 110 4.0506 0.5041 0.3351
4.2651 9.23 120 3.8315 0.5041 0.3351
3.9832 10.0 130 3.6034 0.5041 0.3351
3.7163 10.77 140 3.3782 0.5041 0.3351
3.5481 11.54 150 3.1510 0.5041 0.3351
3.305 12.31 160 2.9279 0.5041 0.3351
3.1589 13.08 170 2.7102 0.5041 0.3351
2.8368 13.85 180 2.4942 0.5041 0.3351
2.5875 14.62 190 2.2896 0.5041 0.3351
2.5938 15.38 200 2.0940 0.5041 0.3351
2.2346 16.15 210 1.9083 0.5041 0.3351
2.0404 16.92 220 1.7372 0.5041 0.3351
1.8744 17.69 230 1.5755 0.5041 0.3351
1.6581 18.46 240 1.4332 0.5041 0.3351
1.7251 19.23 250 1.3152 0.5041 0.3351
1.4569 20.0 260 1.2093 0.5041 0.3351
1.3718 20.77 270 1.1160 0.5041 0.3351
1.1743 21.54 280 1.0209 0.5041 0.3351
1.0744 22.31 290 0.9585 0.6585 0.6309
1.0933 23.08 300 0.8902 0.7019 0.6941
0.9348 23.85 310 0.8504 0.6992 0.6940
0.9611 24.62 320 0.8094 0.6911 0.6901
0.8307 25.38 330 0.7750 0.6992 0.6992
0.7863 26.15 340 0.7776 0.6802 0.6724
0.7431 26.92 350 0.7624 0.6829 0.6737
0.7607 27.69 360 0.7450 0.6775 0.6747
0.8054 28.46 370 0.7161 0.6938 0.6914
0.752 29.23 380 0.7021 0.6965 0.6946
0.72 30.0 390 0.7060 0.6856 0.6846
0.7252 30.77 400 0.6968 0.6911 0.6910
0.6497 31.54 410 0.7016 0.6911 0.6905
0.6215 32.31 420 0.7209 0.6856 0.6848
0.6143 33.08 430 0.6941 0.6856 0.6856
0.6778 33.85 440 0.6887 0.6856 0.6850
0.6027 34.62 450 0.7010 0.6992 0.6990
0.6644 35.38 460 0.7009 0.6721 0.6674
0.6178 36.15 470 0.6840 0.7019 0.6985
0.5817 36.92 480 0.6974 0.6829 0.6827
0.5876 37.69 490 0.6914 0.6802 0.6801
0.5474 38.46 500 0.7056 0.6856 0.6855
0.5327 39.23 510 0.7128 0.6802 0.6800
0.5648 40.0 520 0.7067 0.6748 0.6730
0.6163 40.77 530 0.6804 0.6721 0.6721
0.514 41.54 540 0.6965 0.6775 0.6774
0.5817 42.31 550 0.7177 0.6775 0.6767
0.5345 43.08 560 0.7136 0.6775 0.6772
0.525 43.85 570 0.7159 0.6883 0.6876
0.5043 44.62 580 0.7110 0.6802 0.6801
0.5418 45.38 590 0.7149 0.6748 0.6746
0.5129 46.15 600 0.7108 0.6694 0.6694
0.5331 46.92 610 0.7118 0.6667 0.6667
0.6061 47.69 620 0.7248 0.6802 0.6795
0.5551 48.46 630 0.7196 0.6694 0.6694
0.5049 49.23 640 0.7190 0.6640 0.6638
0.4663 50.0 650 0.7202 0.6694 0.6693

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for callmesan/hindi_base_wav2vec2-audio-abuse-feature

Finetuned
(3)
this model