End of training
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: Harveenchadha/hindi_base_wav2vec2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: hindi_base_wav2vec2-audio-abuse-feature
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# hindi_base_wav2vec2-audio-abuse-feature
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Harveenchadha/hindi_base_wav2vec2](https://huggingface.co/Harveenchadha/hindi_base_wav2vec2) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7202
|
21 |
+
- Accuracy: 0.6694
|
22 |
+
- Macro F1-score: 0.6693
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 64
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 50
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
|
56 |
+
| 6.6553 | 0.77 | 10 | 6.6322 | 0.0 | 0.0 |
|
57 |
+
| 6.5758 | 1.54 | 20 | 6.4417 | 0.5447 | 0.2151 |
|
58 |
+
| 6.3599 | 2.31 | 30 | 6.1486 | 0.5122 | 0.3621 |
|
59 |
+
| 6.0708 | 3.08 | 40 | 5.7751 | 0.5041 | 0.3351 |
|
60 |
+
| 5.8361 | 3.85 | 50 | 5.4662 | 0.5041 | 0.3351 |
|
61 |
+
| 5.5167 | 4.62 | 60 | 5.2127 | 0.5041 | 0.3351 |
|
62 |
+
| 5.289 | 5.38 | 70 | 4.9640 | 0.5041 | 0.3351 |
|
63 |
+
| 5.0266 | 6.15 | 80 | 4.7282 | 0.5041 | 0.3351 |
|
64 |
+
| 4.78 | 6.92 | 90 | 4.5006 | 0.5041 | 0.3351 |
|
65 |
+
| 4.6197 | 7.69 | 100 | 4.2787 | 0.5041 | 0.3351 |
|
66 |
+
| 4.3798 | 8.46 | 110 | 4.0506 | 0.5041 | 0.3351 |
|
67 |
+
| 4.2651 | 9.23 | 120 | 3.8315 | 0.5041 | 0.3351 |
|
68 |
+
| 3.9832 | 10.0 | 130 | 3.6034 | 0.5041 | 0.3351 |
|
69 |
+
| 3.7163 | 10.77 | 140 | 3.3782 | 0.5041 | 0.3351 |
|
70 |
+
| 3.5481 | 11.54 | 150 | 3.1510 | 0.5041 | 0.3351 |
|
71 |
+
| 3.305 | 12.31 | 160 | 2.9279 | 0.5041 | 0.3351 |
|
72 |
+
| 3.1589 | 13.08 | 170 | 2.7102 | 0.5041 | 0.3351 |
|
73 |
+
| 2.8368 | 13.85 | 180 | 2.4942 | 0.5041 | 0.3351 |
|
74 |
+
| 2.5875 | 14.62 | 190 | 2.2896 | 0.5041 | 0.3351 |
|
75 |
+
| 2.5938 | 15.38 | 200 | 2.0940 | 0.5041 | 0.3351 |
|
76 |
+
| 2.2346 | 16.15 | 210 | 1.9083 | 0.5041 | 0.3351 |
|
77 |
+
| 2.0404 | 16.92 | 220 | 1.7372 | 0.5041 | 0.3351 |
|
78 |
+
| 1.8744 | 17.69 | 230 | 1.5755 | 0.5041 | 0.3351 |
|
79 |
+
| 1.6581 | 18.46 | 240 | 1.4332 | 0.5041 | 0.3351 |
|
80 |
+
| 1.7251 | 19.23 | 250 | 1.3152 | 0.5041 | 0.3351 |
|
81 |
+
| 1.4569 | 20.0 | 260 | 1.2093 | 0.5041 | 0.3351 |
|
82 |
+
| 1.3718 | 20.77 | 270 | 1.1160 | 0.5041 | 0.3351 |
|
83 |
+
| 1.1743 | 21.54 | 280 | 1.0209 | 0.5041 | 0.3351 |
|
84 |
+
| 1.0744 | 22.31 | 290 | 0.9585 | 0.6585 | 0.6309 |
|
85 |
+
| 1.0933 | 23.08 | 300 | 0.8902 | 0.7019 | 0.6941 |
|
86 |
+
| 0.9348 | 23.85 | 310 | 0.8504 | 0.6992 | 0.6940 |
|
87 |
+
| 0.9611 | 24.62 | 320 | 0.8094 | 0.6911 | 0.6901 |
|
88 |
+
| 0.8307 | 25.38 | 330 | 0.7750 | 0.6992 | 0.6992 |
|
89 |
+
| 0.7863 | 26.15 | 340 | 0.7776 | 0.6802 | 0.6724 |
|
90 |
+
| 0.7431 | 26.92 | 350 | 0.7624 | 0.6829 | 0.6737 |
|
91 |
+
| 0.7607 | 27.69 | 360 | 0.7450 | 0.6775 | 0.6747 |
|
92 |
+
| 0.8054 | 28.46 | 370 | 0.7161 | 0.6938 | 0.6914 |
|
93 |
+
| 0.752 | 29.23 | 380 | 0.7021 | 0.6965 | 0.6946 |
|
94 |
+
| 0.72 | 30.0 | 390 | 0.7060 | 0.6856 | 0.6846 |
|
95 |
+
| 0.7252 | 30.77 | 400 | 0.6968 | 0.6911 | 0.6910 |
|
96 |
+
| 0.6497 | 31.54 | 410 | 0.7016 | 0.6911 | 0.6905 |
|
97 |
+
| 0.6215 | 32.31 | 420 | 0.7209 | 0.6856 | 0.6848 |
|
98 |
+
| 0.6143 | 33.08 | 430 | 0.6941 | 0.6856 | 0.6856 |
|
99 |
+
| 0.6778 | 33.85 | 440 | 0.6887 | 0.6856 | 0.6850 |
|
100 |
+
| 0.6027 | 34.62 | 450 | 0.7010 | 0.6992 | 0.6990 |
|
101 |
+
| 0.6644 | 35.38 | 460 | 0.7009 | 0.6721 | 0.6674 |
|
102 |
+
| 0.6178 | 36.15 | 470 | 0.6840 | 0.7019 | 0.6985 |
|
103 |
+
| 0.5817 | 36.92 | 480 | 0.6974 | 0.6829 | 0.6827 |
|
104 |
+
| 0.5876 | 37.69 | 490 | 0.6914 | 0.6802 | 0.6801 |
|
105 |
+
| 0.5474 | 38.46 | 500 | 0.7056 | 0.6856 | 0.6855 |
|
106 |
+
| 0.5327 | 39.23 | 510 | 0.7128 | 0.6802 | 0.6800 |
|
107 |
+
| 0.5648 | 40.0 | 520 | 0.7067 | 0.6748 | 0.6730 |
|
108 |
+
| 0.6163 | 40.77 | 530 | 0.6804 | 0.6721 | 0.6721 |
|
109 |
+
| 0.514 | 41.54 | 540 | 0.6965 | 0.6775 | 0.6774 |
|
110 |
+
| 0.5817 | 42.31 | 550 | 0.7177 | 0.6775 | 0.6767 |
|
111 |
+
| 0.5345 | 43.08 | 560 | 0.7136 | 0.6775 | 0.6772 |
|
112 |
+
| 0.525 | 43.85 | 570 | 0.7159 | 0.6883 | 0.6876 |
|
113 |
+
| 0.5043 | 44.62 | 580 | 0.7110 | 0.6802 | 0.6801 |
|
114 |
+
| 0.5418 | 45.38 | 590 | 0.7149 | 0.6748 | 0.6746 |
|
115 |
+
| 0.5129 | 46.15 | 600 | 0.7108 | 0.6694 | 0.6694 |
|
116 |
+
| 0.5331 | 46.92 | 610 | 0.7118 | 0.6667 | 0.6667 |
|
117 |
+
| 0.6061 | 47.69 | 620 | 0.7248 | 0.6802 | 0.6795 |
|
118 |
+
| 0.5551 | 48.46 | 630 | 0.7196 | 0.6694 | 0.6694 |
|
119 |
+
| 0.5049 | 49.23 | 640 | 0.7190 | 0.6640 | 0.6638 |
|
120 |
+
| 0.4663 | 50.0 | 650 | 0.7202 | 0.6694 | 0.6693 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.33.0
|
126 |
+
- Pytorch 2.0.0
|
127 |
+
- Datasets 2.1.0
|
128 |
+
- Tokenizers 0.13.3
|