|
--- |
|
license: mit |
|
--- |
|
|
|
# CLIP ViT-B/32 xlm roberta base - LAION-5B |
|
|
|
[CLIP ViT-B/32 xlm roberta base - LAION-5B](https://huggingface.co/laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k) model converted from OpenCLIP to HuggingFace Transformers. |
|
|
|
See https://gist.github.com/calpt/8e3555bd11f1916b5169c8125117e5ee for conversion script and more info. |
|
|
|
## Usage |
|
|
|
Model uses custom code. Make sure to pass `trust_remote_code=True` when loading the model. |
|
|
|
Example: |
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoFeatureExtractor, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained("calpt/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k", trust_remote_code=True) |
|
|
|
processor = AutoFeatureExtractor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K") |
|
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") |
|
|
|
image_input = processor(Image.open("CLIP.png"), return_tensors="pt") |
|
text_input = tokenizer(["a diagram", "a dog", "a cat"], return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**image_input, **text_input) |
|
text_probs = (100.0 * outputs.logits_per_image.softmax(dim=-1)) |
|
|
|
print("Label probs:", text_probs) |
|
``` |