|
--- |
|
license: mit |
|
datasets: |
|
- cardiffnlp/super_tweeteval |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
--- |
|
# cardiffnlp/twitter-roberta-base-intimacy-latest |
|
|
|
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for intimacy analysis (regression on a single text) on the _TweetIntimacy_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). |
|
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m). |
|
|
|
## Example |
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import torch.nn.functional as F |
|
|
|
model_name = "cardiffnlp/twitter-roberta-base-intimacy-latest" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
text= '@user Furthermore, harassment is ILLEGAL in any form!' |
|
|
|
# with pipeline |
|
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) |
|
pipe(text) |
|
>> [{'label': 'LABEL_0', 'score': 0.5492708086967468}] |
|
|
|
# alternatively |
|
logits = model(**tokenizer(text, return_tensors="pt")) |
|
prob = F.sigmoid(logits.logits).item() |
|
>> 0.5492708086967468 |
|
``` |
|
|
|
## Citation Information |
|
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. |
|
|
|
```bibtex |
|
@inproceedings{antypas2023supertweeteval, |
|
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, |
|
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, |
|
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, |
|
year={2023} |
|
} |
|
``` |