|
# Twitter-roBERTa-base |
|
|
|
This is a roBERTa-base model trained on ~58M tweets, described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). |
|
|
|
|
|
## Ejemplo MLM |
|
|
|
```python |
|
from transformers import pipeline, AutoTokenizer |
|
import numpy as np |
|
|
|
MODEL = "cardiffnlp/roberta-base-rt" |
|
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
|
|
def print_candidates(): |
|
for i in range(5): |
|
token = tokenizer.decode(candidates[i]['token']) |
|
score = np.round(candidates[i]['score'], 4) |
|
print(f"{i+1}) {token} {score}") |
|
|
|
texts = [ |
|
"I am so <mask> π", |
|
"I am so <mask> π’" |
|
] |
|
for text in texts: |
|
print(f"{'-'*30}\n{text}") |
|
candidates = fill_mask(text) |
|
print_candidates() |
|
``` |
|
|
|
``` |
|
------------------------------ |
|
I am so <mask> π |
|
1) happy 0.402 |
|
2) excited 0.1441 |
|
3) proud 0.143 |
|
4) grateful 0.0669 |
|
5) blessed 0.0334 |
|
------------------------------ |
|
I am so <mask> π’ |
|
1) sad 0.2641 |
|
2) sorry 0.1605 |
|
3) tired 0.138 |
|
4) sick 0.0278 |
|
5) hungry 0.0232 |
|
``` |