File size: 13,721 Bytes
8d16e91 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ed64c15ac20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed64c15acb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed64c15ad40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed64c15add0>", "_build": "<function ActorCriticPolicy._build at 0x7ed64c15ae60>", "forward": "<function ActorCriticPolicy.forward at 0x7ed64c15aef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed64c15af80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed64c15b010>", "_predict": "<function ActorCriticPolicy._predict at 0x7ed64c15b0a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed64c15b130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed64c15b1c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed64c15b250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ed64c2f5100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736839349152909477, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq2Vb0UuI66WZlGtTudm7DQzMq6h8RKNAAAgD8AAIA/Zp7qPBgv1D2DCOW8Bjg2vhPhRT1u+L+9AAAAAAAAAADN6am8FDyquvOHMzSTW5CvzKiOOlbxoLMAAIA/AACAP0aGBT4Rb10+RvMZvvvxiL4g+BW9eCqevQAAAAAAAAAAbclpvk7LZj96qoO97XmrvkEdOr6cnQE+AAAAAAAAAAAzILa8lzlaPm78Bj1ZNkm+jm/OPCBMzzwAAAAAAAAAALOF8b3hiLy6rZv7s4mYDLHjioa3qkCzMwAAgD8AAIA/s4VWvbhOwbmmA4o3EiHPMs05bzv/+qS2AACAPwAAgD/m3Sg90vyvPCq/Yb3fPUS+/fUbvIKzCD0AAAAAAAAAAJrtKj0w73c/joOFPOQ73r6Odga8DVxaPQAAAAAAAAAAMysLvcMxZ7o6tEo259cCMsJojTs95mu1AACAPwAAgD8tboQ+laPvPjgLAL6KcYq+eNenPTEgPb0AAAAAAAAAAGa/6r00qFk+YF7JPWquiL7ku8g6PhAyPQAAAAAAAAAAigKFPtu05z7lX6u+2SSOvpvGorvOXsu8AAAAAAAAAAANsI++Iu48Pytu3DzxD6q+cmCfvhVdED4AAAAAAAAAABpH3r0d0dk+kvifPhoTyL77uIw+SKwyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBx0jcEeQyMAWyUTSgBjAF0lEdAkbhm0E5hjXV9lChoBkdAcan/lQuVX2gHS/xoCEdAkbi8M7U5MnV9lChoBkdAbg5eLvTgEWgHTSgBaAhHQJG45mRNh3J1fZQoaAZHQGy5Rgy/KyRoB00mAWgIR0CRuqwN9YwJdX2UKGgGR0BvqtiSaEzwaAdNLQFoCEdAkbrHY150KnV9lChoBkdAcHioduHerWgHTRcBaAhHQJG7PHOryUd1fZQoaAZHQHD/bD63y7RoB0v+aAhHQJG8fEzfrKN1fZQoaAZHQG9k5kCmuT1oB008AWgIR0CRvMah6By0dX2UKGgGR0BxeUbdadMCaAdNKwFoCEdAkb3BkEs8PnV9lChoBkdAcOTdYnv2G2gHTQgBaAhHQJG9zVBlcyF1fZQoaAZHQHIwEahpQDVoB00aAWgIR0CRvhMs6JZXdX2UKGgGR0BvMBmTTvy9aAdNFAFoCEdAkb5Jy2hIv3V9lChoBkdAcoM/lhgE2mgHTSoBaAhHQJG/DftQbdd1fZQoaAZHQG1Sguh9LHxoB00SAWgIR0CRvwys0YTCdX2UKGgGR0BvqC6xxDLKaAdNFgFoCEdAkb+4uf29MHV9lChoBkdAclVkfcN6PmgHTQMBaAhHQJHACJj2Bat1fZQoaAZHQHGdKZ+hGpdoB00gAWgIR0CRwFWEbo8qdX2UKGgGR0BvcrlJYkmhaAdNFwFoCEdAkcCzR+jM3nV9lChoBkdAcrPIIF/x2GgHTWkBaAhHQJHCSAJ9iMJ1fZQoaAZHQHEsctoSL61oB00ZAWgIR0CRwpkQf6oEdX2UKGgGR0ByCgUxmCiAaAdNCgFoCEdAkcKxreqJdnV9lChoBkdAcAn9SuQp4WgHTToBaAhHQJHDujSG8Ep1fZQoaAZHQG441vddmg9oB00hAWgIR0CRxaGTs6aLdX2UKGgGR0BwfD2nKnvVaAdNKwFoCEdAkcWtk4FRpHV9lChoBkdAbO7o4+8oQWgHTSMBaAhHQJHHDER8MNN1fZQoaAZHQHJnF8kUsWhoB00qAWgIR0CRyB5vcafjdX2UKGgGR0BwgCQbMotuaAdNMgFoCEdAkcgo8lolEHV9lChoBkdAcfi6S1Vo6GgHTUoBaAhHQJHIvyhBZ6l1fZQoaAZHQG2U1AiV0LdoB00vAWgIR0CRyWC6H0sfdX2UKGgGR0BxtHQLNOdoaAdNNgFoCEdAkcmuR9w3pHV9lChoBkdAb99Muez2OGgHTR4BaAhHQJHJw5CF9KF1fZQoaAZHQG5ojyWiUPhoB00IAWgIR0CRydf779AHdX2UKGgGR0BtwsINVinYaAdNKAFoCEdAkcqFrhzeXXV9lChoBkdAbV8W6bvw3GgHTS8BaAhHQJHLszj3mFJ1fZQoaAZHQHB1umrKeTVoB00EAWgIR0CRzLFQ2uPndX2UKGgGR0BuXlFH8TBZaAdNJwFoCEdAkc2hDLKV6nV9lChoBkdAca1JuEVWS2gHTUIBaAhHQJHPOO2iL2p1fZQoaAZHQHBpJvxYq5NoB00IAWgIR0CRz79FF2FGdX2UKGgGR0BxFwcsDnvEaAdNQAFoCEdAkc/3SfDk2nV9lChoBkdAcnwM0gr6L2gHTRsBaAhHQJHQTk2gnMN1fZQoaAZHQHFFcr7O3UhoB00aAWgIR0CR0oCAMDwIdX2UKGgGR0BvfYlhPTG6aAdNMwFoCEdAkdLVFlTWG3V9lChoBkdAcGS2W6bvw2gHTVYBaAhHQJHTLENvwVl1fZQoaAZHQHDDKRU3n6loB00zAWgIR0CR09aMJhOQdX2UKGgGR0BxpbjLjghsaAdNHQFoCEdAkdQdOEdvKnV9lChoBkdAcSkUCJXQt2gHTT0BaAhHQJHUez/p+tt1fZQoaAZHQHGaG+oLofVoB01WAWgIR0CR1RfnwG4adX2UKGgGR0BxChuIhyKfaAdNfAFoCEdAkdUgZGax5nV9lChoBkdAcYg8TSLIgmgHTR8BaAhHQJHV7t4RmK91fZQoaAZHQHEx1cpsoDxoB01GAWgIR0CR1jqWC2+gdX2UKGgGR0ByLVyvLX+VaAdNPAFoCEdAkejXhn8KonV9lChoBkdAcogmWt2cKGgHTSkBaAhHQJHqKwRoRI11fZQoaAZHQHKQg53kgfVoB009AWgIR0CR6pO8kD6ndX2UKGgGR0BwXuDK5kLAaAdNPAFoCEdAkess1Gb1AnV9lChoBkdAcpUssxwhn2gHTQoBaAhHQJHsK0WuX/p1fZQoaAZHQGyAlFlTWG1oB00lAWgIR0CR7LZ4fOlgdX2UKGgGR0Bvl92Pkq+baAdNkQFoCEdAkeyz4DcM3XV9lChoBkdAblf/7SApa2gHTR0BaAhHQJHtCp5u63B1fZQoaAZHQHGaTIvJzT5oB00dAWgIR0CR7ZwJPZZkdX2UKGgGR0BxdGinHeabaAdNNwFoCEdAke6gQHzH0nV9lChoBkdAcNvITXarWGgHTRUBaAhHQJHuoQZn+Q51fZQoaAZHQHFQGSpzcRFoB00hAWgIR0CR7u2rXDm9dX2UKGgGR0BwtqXAuZkTaAdNJAFoCEdAkfBCvxH5J3V9lChoBkdAb83bD/EOy2gHTTABaAhHQJHwTh60IC51fZQoaAZHQHEORDTjNpxoB01kAWgIR0CR8EwIt16mdX2UKGgGR0Bwcee4Cp3paAdNIAFoCEdAkfFRVZLZjHV9lChoBkdAa+MbrC3w1GgHTQcBaAhHQJHy3FtKqXF1fZQoaAZHQHHHHEdeY2NoB00iAWgIR0CR8x1dPci4dX2UKGgGR0Bw2BxlxwQ2aAdNUQFoCEdAkfRIeDFqBXV9lChoBkdAcMCiL2pQ12gHTQQBaAhHQJH0XUrkKeF1fZQoaAZHQHD0lUuL741oB00sAWgIR0CR9RCGetjkdX2UKGgGR0BwnPVTaTOgaAdNPwFoCEdAkfY15Sm65HV9lChoBkdActayad+Xq2gHTTwBaAhHQJH2iEAYHgR1fZQoaAZHQG26nZK3/gloB00JAWgIR0CR9rJwKjSHdX2UKGgGR0Bu5WykbgjyaAdNKAFoCEdAkffZ8neBQXV9lChoBkdAcZQBRhttRGgHTQIBaAhHQJH4wbLlmvp1fZQoaAZHQHKMAW8AaNxoB01mAWgIR0CR+RmUGFBZdX2UKGgGR0BtYHLJSzgNaAdNQgFoCEdAkfuQY+B6KXV9lChoBkdAVicc94eLemgHTegDaAhHQJH7wFaB7NV1fZQoaAZHQHI275ZbILhoB00gAWgIR0CR+835eqrBdX2UKGgGR0ByipiqhlDnaAdNfwFoCEdAkfw43Ns3ynV9lChoBkdAcA3pbUwztWgHTVQBaAhHQJH8XndO6/Z1fZQoaAZHQHDs0rK/201oB00qAWgIR0CR/o9F4LThdX2UKGgGR0BxM4VIqbz9aAdNRQFoCEdAkf9gv6CUYHV9lChoBkdAcWt/hESdv2gHTSEBaAhHQJH/n8l5WzZ1fZQoaAZHQHKPwXAM2FZoB00fAWgIR0CR/6fTCtRvdX2UKGgGR0Bv3R4+r2g4aAdNKwFoCEdAkgEBkiD/VHV9lChoBkdAcKm0F8ohIWgHTQgBaAhHQJIBXLSuyNZ1fZQoaAZHQHGgd+1Bt1poB0v/aAhHQJICXutwJgN1fZQoaAZHQG9O/4REnb9oB00lAWgIR0CSAqUYKpkxdX2UKGgGR0BxALqrzXjEaAdNQAFoCEdAkgMuzlcQiHV9lChoBkdAcOrZXMhX82gHTRwBaAhHQJIERd4Vym11fZQoaAZHQG7RC8FpwjtoB00nAWgIR0CSBFfG+9J0dX2UKGgGR0BxKIjC53C9aAdL+2gIR0CSBPs0HhS+dX2UKGgGR0BwziAuqWC3aAdNGgFoCEdAkgWjHOryUnV9lChoBkdAa+aT6BRQ8GgHTSMBaAhHQJIF/xI8QqZ1fZQoaAZHQHHcLxy4nWtoB00jAWgIR0CSBlDJlrdndX2UKGgGR0BxktYW+GoKaAdNDAFoCEdAkgdWL1mJ33V9lChoBkdAcGDzcAR02mgHTUsBaAhHQJIHjundfsx1fZQoaAZHQG7/W3z+WGBoB00CAWgIR0CSB9D6nBLxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |