SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
supportive |
|
opposed |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9570 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.6")
# Run inference
preds = model(" \"Ein nationales Tempolimit auf Autobahnen wäre ein weiterer Schritt in Richtung eines überregulierten Staates, der den Bürgern ihre Freiheit stückweise entreißt.\"")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 25.7025 | 53 |
Label | Training Sample Count |
---|---|
neutral | 318 |
opposed | 388 |
supportive | 410 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2339 | - |
0.0019 | 50 | 0.2439 | - |
0.0039 | 100 | 0.2407 | - |
0.0058 | 150 | 0.2295 | - |
0.0078 | 200 | 0.2123 | - |
0.0097 | 250 | 0.1903 | - |
0.0116 | 300 | 0.153 | - |
0.0136 | 350 | 0.1322 | - |
0.0155 | 400 | 0.116 | - |
0.0174 | 450 | 0.0937 | - |
0.0194 | 500 | 0.0721 | - |
0.0213 | 550 | 0.0525 | - |
0.0233 | 600 | 0.0388 | - |
0.0252 | 650 | 0.0338 | - |
0.0271 | 700 | 0.026 | - |
0.0291 | 750 | 0.0224 | - |
0.0310 | 800 | 0.0122 | - |
0.0329 | 850 | 0.0088 | - |
0.0349 | 900 | 0.0079 | - |
0.0368 | 950 | 0.0055 | - |
0.0388 | 1000 | 0.004 | - |
0.0407 | 1050 | 0.0027 | - |
0.0426 | 1100 | 0.0025 | - |
0.0446 | 1150 | 0.0019 | - |
0.0465 | 1200 | 0.0014 | - |
0.0484 | 1250 | 0.0013 | - |
0.0504 | 1300 | 0.0006 | - |
0.0523 | 1350 | 0.0012 | - |
0.0543 | 1400 | 0.0006 | - |
0.0562 | 1450 | 0.0004 | - |
0.0581 | 1500 | 0.0003 | - |
0.0601 | 1550 | 0.0003 | - |
0.0620 | 1600 | 0.0003 | - |
0.0639 | 1650 | 0.0002 | - |
0.0659 | 1700 | 0.0007 | - |
0.0678 | 1750 | 0.0002 | - |
0.0698 | 1800 | 0.0002 | - |
0.0717 | 1850 | 0.0002 | - |
0.0736 | 1900 | 0.0003 | - |
0.0756 | 1950 | 0.0002 | - |
0.0775 | 2000 | 0.0001 | - |
0.0794 | 2050 | 0.0001 | - |
0.0814 | 2100 | 0.0001 | - |
0.0833 | 2150 | 0.0001 | - |
0.0853 | 2200 | 0.0008 | - |
0.0872 | 2250 | 0.0007 | - |
0.0891 | 2300 | 0.0007 | - |
0.0911 | 2350 | 0.0002 | - |
0.0930 | 2400 | 0.0001 | - |
0.0950 | 2450 | 0.0001 | - |
0.0969 | 2500 | 0.0014 | - |
0.0988 | 2550 | 0.0008 | - |
0.1008 | 2600 | 0.0009 | - |
0.1027 | 2650 | 0.0006 | - |
0.1046 | 2700 | 0.0008 | - |
0.1066 | 2750 | 0.0001 | - |
0.1085 | 2800 | 0.0 | - |
0.1105 | 2850 | 0.0 | - |
0.1124 | 2900 | 0.0 | - |
0.1143 | 2950 | 0.0 | - |
0.1163 | 3000 | 0.0 | - |
0.1182 | 3050 | 0.0 | - |
0.1201 | 3100 | 0.0 | - |
0.1221 | 3150 | 0.0 | - |
0.1240 | 3200 | 0.0 | - |
0.1260 | 3250 | 0.0 | - |
0.1279 | 3300 | 0.0 | - |
0.1298 | 3350 | 0.0 | - |
0.1318 | 3400 | 0.0 | - |
0.1337 | 3450 | 0.0 | - |
0.1356 | 3500 | 0.0 | - |
0.1376 | 3550 | 0.0 | - |
0.1395 | 3600 | 0.0 | - |
0.1415 | 3650 | 0.0 | - |
0.1434 | 3700 | 0.0 | - |
0.1453 | 3750 | 0.0 | - |
0.1473 | 3800 | 0.0 | - |
0.1492 | 3850 | 0.0 | - |
0.1511 | 3900 | 0.0 | - |
0.1531 | 3950 | 0.0 | - |
0.1550 | 4000 | 0.001 | - |
0.1570 | 4050 | 0.0012 | - |
0.1589 | 4100 | 0.0042 | - |
0.1608 | 4150 | 0.0023 | - |
0.1628 | 4200 | 0.001 | - |
0.1647 | 4250 | 0.001 | - |
0.1666 | 4300 | 0.0001 | - |
0.1686 | 4350 | 0.0 | - |
0.1705 | 4400 | 0.0 | - |
0.1725 | 4450 | 0.0 | - |
0.1744 | 4500 | 0.0 | - |
0.1763 | 4550 | 0.0003 | - |
0.1783 | 4600 | 0.0 | - |
0.1802 | 4650 | 0.0 | - |
0.1821 | 4700 | 0.0005 | - |
0.1841 | 4750 | 0.0009 | - |
0.1860 | 4800 | 0.0001 | - |
0.1880 | 4850 | 0.0 | - |
0.1899 | 4900 | 0.0 | - |
0.1918 | 4950 | 0.0 | - |
0.1938 | 5000 | 0.0 | - |
0.1957 | 5050 | 0.0 | - |
0.1977 | 5100 | 0.0 | - |
0.1996 | 5150 | 0.0 | - |
0.2015 | 5200 | 0.0 | - |
0.2035 | 5250 | 0.0 | - |
0.2054 | 5300 | 0.0 | - |
0.2073 | 5350 | 0.0 | - |
0.2093 | 5400 | 0.0 | - |
0.2112 | 5450 | 0.0 | - |
0.2132 | 5500 | 0.0 | - |
0.2151 | 5550 | 0.0 | - |
0.2170 | 5600 | 0.0 | - |
0.2190 | 5650 | 0.0 | - |
0.2209 | 5700 | 0.0 | - |
0.2228 | 5750 | 0.0 | - |
0.2248 | 5800 | 0.0 | - |
0.2267 | 5850 | 0.0 | - |
0.2287 | 5900 | 0.0 | - |
0.2306 | 5950 | 0.0 | - |
0.2325 | 6000 | 0.0 | - |
0.2345 | 6050 | 0.0 | - |
0.2364 | 6100 | 0.0 | - |
0.2383 | 6150 | 0.0 | - |
0.2403 | 6200 | 0.0 | - |
0.2422 | 6250 | 0.0 | - |
0.2442 | 6300 | 0.0 | - |
0.2461 | 6350 | 0.0 | - |
0.2480 | 6400 | 0.0 | - |
0.2500 | 6450 | 0.0 | - |
0.2519 | 6500 | 0.0 | - |
0.2538 | 6550 | 0.0 | - |
0.2558 | 6600 | 0.0 | - |
0.2577 | 6650 | 0.0 | - |
0.2597 | 6700 | 0.0 | - |
0.2616 | 6750 | 0.0 | - |
0.2635 | 6800 | 0.0 | - |
0.2655 | 6850 | 0.0 | - |
0.2674 | 6900 | 0.0 | - |
0.2693 | 6950 | 0.0 | - |
0.2713 | 7000 | 0.0 | - |
0.2732 | 7050 | 0.0 | - |
0.2752 | 7100 | 0.0 | - |
0.2771 | 7150 | 0.0 | - |
0.2790 | 7200 | 0.0 | - |
0.2810 | 7250 | 0.0 | - |
0.2829 | 7300 | 0.0 | - |
0.2849 | 7350 | 0.0 | - |
0.2868 | 7400 | 0.0 | - |
0.2887 | 7450 | 0.0 | - |
0.2907 | 7500 | 0.0 | - |
0.2926 | 7550 | 0.0 | - |
0.2945 | 7600 | 0.0 | - |
0.2965 | 7650 | 0.0 | - |
0.2984 | 7700 | 0.0 | - |
0.3004 | 7750 | 0.0 | - |
0.3023 | 7800 | 0.0 | - |
0.3042 | 7850 | 0.0 | - |
0.3062 | 7900 | 0.0 | - |
0.3081 | 7950 | 0.0 | - |
0.3100 | 8000 | 0.0 | - |
0.3120 | 8050 | 0.0 | - |
0.3139 | 8100 | 0.0 | - |
0.3159 | 8150 | 0.0 | - |
0.3178 | 8200 | 0.0 | - |
0.3197 | 8250 | 0.0 | - |
0.3217 | 8300 | 0.0 | - |
0.3236 | 8350 | 0.0 | - |
0.3255 | 8400 | 0.0 | - |
0.3275 | 8450 | 0.0 | - |
0.3294 | 8500 | 0.0 | - |
0.3314 | 8550 | 0.0 | - |
0.3333 | 8600 | 0.0 | - |
0.3352 | 8650 | 0.0 | - |
0.3372 | 8700 | 0.0 | - |
0.3391 | 8750 | 0.0 | - |
0.3410 | 8800 | 0.0 | - |
0.3430 | 8850 | 0.0 | - |
0.3449 | 8900 | 0.0 | - |
0.3469 | 8950 | 0.0 | - |
0.3488 | 9000 | 0.0 | - |
0.3507 | 9050 | 0.0 | - |
0.3527 | 9100 | 0.0 | - |
0.3546 | 9150 | 0.0 | - |
0.3565 | 9200 | 0.0042 | - |
0.3585 | 9250 | 0.0083 | - |
0.3604 | 9300 | 0.0071 | - |
0.3624 | 9350 | 0.0011 | - |
0.3643 | 9400 | 0.0008 | - |
0.3662 | 9450 | 0.001 | - |
0.3682 | 9500 | 0.0006 | - |
0.3701 | 9550 | 0.0 | - |
0.3720 | 9600 | 0.0 | - |
0.3740 | 9650 | 0.0004 | - |
0.3759 | 9700 | 0.0 | - |
0.3779 | 9750 | 0.0 | - |
0.3798 | 9800 | 0.0 | - |
0.3817 | 9850 | 0.0 | - |
0.3837 | 9900 | 0.0 | - |
0.3856 | 9950 | 0.0 | - |
0.3876 | 10000 | 0.0 | - |
0.3895 | 10050 | 0.0 | - |
0.3914 | 10100 | 0.0 | - |
0.3934 | 10150 | 0.0 | - |
0.3953 | 10200 | 0.0 | - |
0.3972 | 10250 | 0.0 | - |
0.3992 | 10300 | 0.0 | - |
0.4011 | 10350 | 0.0 | - |
0.4031 | 10400 | 0.0 | - |
0.4050 | 10450 | 0.0 | - |
0.4069 | 10500 | 0.0 | - |
0.4089 | 10550 | 0.0 | - |
0.4108 | 10600 | 0.0 | - |
0.4127 | 10650 | 0.0 | - |
0.4147 | 10700 | 0.0 | - |
0.4166 | 10750 | 0.0 | - |
0.4186 | 10800 | 0.0 | - |
0.4205 | 10850 | 0.0 | - |
0.4224 | 10900 | 0.0 | - |
0.4244 | 10950 | 0.0 | - |
0.4263 | 11000 | 0.0 | - |
0.4282 | 11050 | 0.0 | - |
0.4302 | 11100 | 0.0 | - |
0.4321 | 11150 | 0.0 | - |
0.4341 | 11200 | 0.0 | - |
0.4360 | 11250 | 0.0 | - |
0.4379 | 11300 | 0.0 | - |
0.4399 | 11350 | 0.0 | - |
0.4418 | 11400 | 0.0 | - |
0.4437 | 11450 | 0.0 | - |
0.4457 | 11500 | 0.0 | - |
0.4476 | 11550 | 0.0 | - |
0.4496 | 11600 | 0.0 | - |
0.4515 | 11650 | 0.0 | - |
0.4534 | 11700 | 0.0 | - |
0.4554 | 11750 | 0.0 | - |
0.4573 | 11800 | 0.0 | - |
0.4592 | 11850 | 0.0 | - |
0.4612 | 11900 | 0.0 | - |
0.4631 | 11950 | 0.0 | - |
0.4651 | 12000 | 0.0 | - |
0.4670 | 12050 | 0.0 | - |
0.4689 | 12100 | 0.0 | - |
0.4709 | 12150 | 0.0 | - |
0.4728 | 12200 | 0.0 | - |
0.4748 | 12250 | 0.0 | - |
0.4767 | 12300 | 0.0 | - |
0.4786 | 12350 | 0.0 | - |
0.4806 | 12400 | 0.0 | - |
0.4825 | 12450 | 0.0 | - |
0.4844 | 12500 | 0.0 | - |
0.4864 | 12550 | 0.0 | - |
0.4883 | 12600 | 0.0 | - |
0.4903 | 12650 | 0.0 | - |
0.4922 | 12700 | 0.0 | - |
0.4941 | 12750 | 0.0 | - |
0.4961 | 12800 | 0.0 | - |
0.4980 | 12850 | 0.0 | - |
0.4999 | 12900 | 0.0 | - |
0.5019 | 12950 | 0.0 | - |
0.5038 | 13000 | 0.0 | - |
0.5058 | 13050 | 0.0 | - |
0.5077 | 13100 | 0.0 | - |
0.5096 | 13150 | 0.0 | - |
0.5116 | 13200 | 0.0 | - |
0.5135 | 13250 | 0.0 | - |
0.5154 | 13300 | 0.0 | - |
0.5174 | 13350 | 0.0 | - |
0.5193 | 13400 | 0.0 | - |
0.5213 | 13450 | 0.0 | - |
0.5232 | 13500 | 0.0 | - |
0.5251 | 13550 | 0.0 | - |
0.5271 | 13600 | 0.0 | - |
0.5290 | 13650 | 0.0 | - |
0.5309 | 13700 | 0.0 | - |
0.5329 | 13750 | 0.0 | - |
0.5348 | 13800 | 0.0 | - |
0.5368 | 13850 | 0.0 | - |
0.5387 | 13900 | 0.0 | - |
0.5406 | 13950 | 0.0 | - |
0.5426 | 14000 | 0.0 | - |
0.5445 | 14050 | 0.0 | - |
0.5464 | 14100 | 0.0 | - |
0.5484 | 14150 | 0.0 | - |
0.5503 | 14200 | 0.0 | - |
0.5523 | 14250 | 0.0 | - |
0.5542 | 14300 | 0.0 | - |
0.5561 | 14350 | 0.0 | - |
0.5581 | 14400 | 0.0 | - |
0.5600 | 14450 | 0.0 | - |
0.5620 | 14500 | 0.0 | - |
0.5639 | 14550 | 0.0 | - |
0.5658 | 14600 | 0.0 | - |
0.5678 | 14650 | 0.0 | - |
0.5697 | 14700 | 0.0 | - |
0.5716 | 14750 | 0.0 | - |
0.5736 | 14800 | 0.0 | - |
0.5755 | 14850 | 0.0 | - |
0.5775 | 14900 | 0.0 | - |
0.5794 | 14950 | 0.0 | - |
0.5813 | 15000 | 0.0 | - |
0.5833 | 15050 | 0.0 | - |
0.5852 | 15100 | 0.0 | - |
0.5871 | 15150 | 0.0 | - |
0.5891 | 15200 | 0.0 | - |
0.5910 | 15250 | 0.0 | - |
0.5930 | 15300 | 0.0 | - |
0.5949 | 15350 | 0.0 | - |
0.5968 | 15400 | 0.0 | - |
0.5988 | 15450 | 0.0 | - |
0.6007 | 15500 | 0.0 | - |
0.6026 | 15550 | 0.0 | - |
0.6046 | 15600 | 0.0 | - |
0.6065 | 15650 | 0.0 | - |
0.6085 | 15700 | 0.0 | - |
0.6104 | 15750 | 0.0 | - |
0.6123 | 15800 | 0.0 | - |
0.6143 | 15850 | 0.0 | - |
0.6162 | 15900 | 0.0 | - |
0.6181 | 15950 | 0.0 | - |
0.6201 | 16000 | 0.0 | - |
0.6220 | 16050 | 0.0 | - |
0.6240 | 16100 | 0.0 | - |
0.6259 | 16150 | 0.0 | - |
0.6278 | 16200 | 0.0 | - |
0.6298 | 16250 | 0.0 | - |
0.6317 | 16300 | 0.0 | - |
0.6336 | 16350 | 0.0 | - |
0.6356 | 16400 | 0.0 | - |
0.6375 | 16450 | 0.0 | - |
0.6395 | 16500 | 0.0 | - |
0.6414 | 16550 | 0.0 | - |
0.6433 | 16600 | 0.0 | - |
0.6453 | 16650 | 0.0 | - |
0.6472 | 16700 | 0.0 | - |
0.6491 | 16750 | 0.0 | - |
0.6511 | 16800 | 0.0 | - |
0.6530 | 16850 | 0.0 | - |
0.6550 | 16900 | 0.0 | - |
0.6569 | 16950 | 0.0 | - |
0.6588 | 17000 | 0.0 | - |
0.6608 | 17050 | 0.0 | - |
0.6627 | 17100 | 0.0 | - |
0.6647 | 17150 | 0.0 | - |
0.6666 | 17200 | 0.0 | - |
0.6685 | 17250 | 0.0 | - |
0.6705 | 17300 | 0.0 | - |
0.6724 | 17350 | 0.0 | - |
0.6743 | 17400 | 0.0 | - |
0.6763 | 17450 | 0.0 | - |
0.6782 | 17500 | 0.0 | - |
0.6802 | 17550 | 0.0 | - |
0.6821 | 17600 | 0.0 | - |
0.6840 | 17650 | 0.0 | - |
0.6860 | 17700 | 0.0 | - |
0.6879 | 17750 | 0.0 | - |
0.6898 | 17800 | 0.0 | - |
0.6918 | 17850 | 0.0 | - |
0.6937 | 17900 | 0.0 | - |
0.6957 | 17950 | 0.0 | - |
0.6976 | 18000 | 0.0 | - |
0.6995 | 18050 | 0.0 | - |
0.7015 | 18100 | 0.0 | - |
0.7034 | 18150 | 0.0 | - |
0.7053 | 18200 | 0.0 | - |
0.7073 | 18250 | 0.0 | - |
0.7092 | 18300 | 0.0 | - |
0.7112 | 18350 | 0.0 | - |
0.7131 | 18400 | 0.0 | - |
0.7150 | 18450 | 0.0 | - |
0.7170 | 18500 | 0.0 | - |
0.7189 | 18550 | 0.0 | - |
0.7208 | 18600 | 0.0 | - |
0.7228 | 18650 | 0.0 | - |
0.7247 | 18700 | 0.0 | - |
0.7267 | 18750 | 0.0 | - |
0.7286 | 18800 | 0.0 | - |
0.7305 | 18850 | 0.0 | - |
0.7325 | 18900 | 0.0 | - |
0.7344 | 18950 | 0.0 | - |
0.7363 | 19000 | 0.0 | - |
0.7383 | 19050 | 0.0 | - |
0.7402 | 19100 | 0.0 | - |
0.7422 | 19150 | 0.0 | - |
0.7441 | 19200 | 0.0 | - |
0.7460 | 19250 | 0.0 | - |
0.7480 | 19300 | 0.0 | - |
0.7499 | 19350 | 0.0 | - |
0.7519 | 19400 | 0.0 | - |
0.7538 | 19450 | 0.0 | - |
0.7557 | 19500 | 0.0 | - |
0.7577 | 19550 | 0.0 | - |
0.7596 | 19600 | 0.0 | - |
0.7615 | 19650 | 0.0 | - |
0.7635 | 19700 | 0.0 | - |
0.7654 | 19750 | 0.0 | - |
0.7674 | 19800 | 0.0 | - |
0.7693 | 19850 | 0.0 | - |
0.7712 | 19900 | 0.0 | - |
0.7732 | 19950 | 0.0 | - |
0.7751 | 20000 | 0.0 | - |
0.7770 | 20050 | 0.0 | - |
0.7790 | 20100 | 0.0 | - |
0.7809 | 20150 | 0.0 | - |
0.7829 | 20200 | 0.0 | - |
0.7848 | 20250 | 0.0 | - |
0.7867 | 20300 | 0.0 | - |
0.7887 | 20350 | 0.0 | - |
0.7906 | 20400 | 0.0 | - |
0.7925 | 20450 | 0.0 | - |
0.7945 | 20500 | 0.0 | - |
0.7964 | 20550 | 0.0 | - |
0.7984 | 20600 | 0.0 | - |
0.8003 | 20650 | 0.0 | - |
0.8022 | 20700 | 0.0 | - |
0.8042 | 20750 | 0.0 | - |
0.8061 | 20800 | 0.0 | - |
0.8080 | 20850 | 0.0 | - |
0.8100 | 20900 | 0.0 | - |
0.8119 | 20950 | 0.0 | - |
0.8139 | 21000 | 0.0 | - |
0.8158 | 21050 | 0.0 | - |
0.8177 | 21100 | 0.0 | - |
0.8197 | 21150 | 0.0 | - |
0.8216 | 21200 | 0.0 | - |
0.8235 | 21250 | 0.0 | - |
0.8255 | 21300 | 0.0 | - |
0.8274 | 21350 | 0.0 | - |
0.8294 | 21400 | 0.0 | - |
0.8313 | 21450 | 0.0 | - |
0.8332 | 21500 | 0.0 | - |
0.8352 | 21550 | 0.0 | - |
0.8371 | 21600 | 0.0 | - |
0.8390 | 21650 | 0.0 | - |
0.8410 | 21700 | 0.0 | - |
0.8429 | 21750 | 0.0 | - |
0.8449 | 21800 | 0.0 | - |
0.8468 | 21850 | 0.0 | - |
0.8487 | 21900 | 0.0 | - |
0.8507 | 21950 | 0.0 | - |
0.8526 | 22000 | 0.0 | - |
0.8546 | 22050 | 0.0 | - |
0.8565 | 22100 | 0.0 | - |
0.8584 | 22150 | 0.0 | - |
0.8604 | 22200 | 0.0 | - |
0.8623 | 22250 | 0.0 | - |
0.8642 | 22300 | 0.0 | - |
0.8662 | 22350 | 0.0 | - |
0.8681 | 22400 | 0.0 | - |
0.8701 | 22450 | 0.0 | - |
0.8720 | 22500 | 0.0 | - |
0.8739 | 22550 | 0.0 | - |
0.8759 | 22600 | 0.0 | - |
0.8778 | 22650 | 0.0 | - |
0.8797 | 22700 | 0.0 | - |
0.8817 | 22750 | 0.0 | - |
0.8836 | 22800 | 0.0 | - |
0.8856 | 22850 | 0.0 | - |
0.8875 | 22900 | 0.0 | - |
0.8894 | 22950 | 0.0 | - |
0.8914 | 23000 | 0.0 | - |
0.8933 | 23050 | 0.0 | - |
0.8952 | 23100 | 0.0 | - |
0.8972 | 23150 | 0.0 | - |
0.8991 | 23200 | 0.0 | - |
0.9011 | 23250 | 0.0 | - |
0.9030 | 23300 | 0.0 | - |
0.9049 | 23350 | 0.0 | - |
0.9069 | 23400 | 0.0 | - |
0.9088 | 23450 | 0.0 | - |
0.9107 | 23500 | 0.0 | - |
0.9127 | 23550 | 0.0 | - |
0.9146 | 23600 | 0.0 | - |
0.9166 | 23650 | 0.0 | - |
0.9185 | 23700 | 0.0 | - |
0.9204 | 23750 | 0.0 | - |
0.9224 | 23800 | 0.0 | - |
0.9243 | 23850 | 0.0 | - |
0.9262 | 23900 | 0.0 | - |
0.9282 | 23950 | 0.0 | - |
0.9301 | 24000 | 0.0 | - |
0.9321 | 24050 | 0.0 | - |
0.9340 | 24100 | 0.0 | - |
0.9359 | 24150 | 0.0 | - |
0.9379 | 24200 | 0.0 | - |
0.9398 | 24250 | 0.0 | - |
0.9418 | 24300 | 0.0 | - |
0.9437 | 24350 | 0.0 | - |
0.9456 | 24400 | 0.0 | - |
0.9476 | 24450 | 0.0 | - |
0.9495 | 24500 | 0.0 | - |
0.9514 | 24550 | 0.0 | - |
0.9534 | 24600 | 0.0 | - |
0.9553 | 24650 | 0.0 | - |
0.9573 | 24700 | 0.0 | - |
0.9592 | 24750 | 0.0 | - |
0.9611 | 24800 | 0.0 | - |
0.9631 | 24850 | 0.0 | - |
0.9650 | 24900 | 0.0 | - |
0.9669 | 24950 | 0.0 | - |
0.9689 | 25000 | 0.0 | - |
0.9708 | 25050 | 0.0 | - |
0.9728 | 25100 | 0.0 | - |
0.9747 | 25150 | 0.0 | - |
0.9766 | 25200 | 0.0 | - |
0.9786 | 25250 | 0.0 | - |
0.9805 | 25300 | 0.0 | - |
0.9824 | 25350 | 0.0 | - |
0.9844 | 25400 | 0.0 | - |
0.9863 | 25450 | 0.0 | - |
0.9883 | 25500 | 0.0 | - |
0.9902 | 25550 | 0.0 | - |
0.9921 | 25600 | 0.0 | - |
0.9941 | 25650 | 0.0 | - |
0.9960 | 25700 | 0.0 | - |
0.9979 | 25750 | 0.0 | - |
0.9999 | 25800 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.