SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
opposed |
|
supportive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9534 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/paraphrase-multilingual-mpnet-klimacoder_v0.8")
# Run inference
preds = model(" \"Das Heizungsgesetz ist nichts weiter als ein weiterer Schritt in Richtung eines grünen Diktats, das die Bürger in die Kälte schickt.\"")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 25.6541 | 57 |
Label | Training Sample Count |
---|---|
neutral | 321 |
opposed | 391 |
supportive | 404 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.1985 | - |
0.0019 | 50 | 0.2445 | - |
0.0039 | 100 | 0.2321 | - |
0.0058 | 150 | 0.2012 | - |
0.0077 | 200 | 0.1614 | - |
0.0097 | 250 | 0.1188 | - |
0.0116 | 300 | 0.0849 | - |
0.0136 | 350 | 0.0563 | - |
0.0155 | 400 | 0.0374 | - |
0.0174 | 450 | 0.0216 | - |
0.0194 | 500 | 0.0144 | - |
0.0213 | 550 | 0.0099 | - |
0.0232 | 600 | 0.0061 | - |
0.0252 | 650 | 0.007 | - |
0.0271 | 700 | 0.0026 | - |
0.0290 | 750 | 0.0017 | - |
0.0310 | 800 | 0.0012 | - |
0.0329 | 850 | 0.0014 | - |
0.0349 | 900 | 0.002 | - |
0.0368 | 950 | 0.0008 | - |
0.0387 | 1000 | 0.0009 | - |
0.0407 | 1050 | 0.0003 | - |
0.0426 | 1100 | 0.0007 | - |
0.0445 | 1150 | 0.0008 | - |
0.0465 | 1200 | 0.0006 | - |
0.0484 | 1250 | 0.0002 | - |
0.0503 | 1300 | 0.0001 | - |
0.0523 | 1350 | 0.0001 | - |
0.0542 | 1400 | 0.0001 | - |
0.0562 | 1450 | 0.0001 | - |
0.0581 | 1500 | 0.0007 | - |
0.0600 | 1550 | 0.0005 | - |
0.0620 | 1600 | 0.0007 | - |
0.0639 | 1650 | 0.0012 | - |
0.0658 | 1700 | 0.0007 | - |
0.0678 | 1750 | 0.0038 | - |
0.0697 | 1800 | 0.0018 | - |
0.0716 | 1850 | 0.0049 | - |
0.0736 | 1900 | 0.0061 | - |
0.0755 | 1950 | 0.0038 | - |
0.0775 | 2000 | 0.0037 | - |
0.0794 | 2050 | 0.0006 | - |
0.0813 | 2100 | 0.0001 | - |
0.0833 | 2150 | 0.0 | - |
0.0852 | 2200 | 0.0 | - |
0.0871 | 2250 | 0.0 | - |
0.0891 | 2300 | 0.0 | - |
0.0910 | 2350 | 0.0 | - |
0.0929 | 2400 | 0.0 | - |
0.0949 | 2450 | 0.0 | - |
0.0968 | 2500 | 0.0 | - |
0.0987 | 2550 | 0.0 | - |
0.1007 | 2600 | 0.0 | - |
0.1026 | 2650 | 0.0 | - |
0.1046 | 2700 | 0.0 | - |
0.1065 | 2750 | 0.0 | - |
0.1084 | 2800 | 0.0 | - |
0.1104 | 2850 | 0.0 | - |
0.1123 | 2900 | 0.0 | - |
0.1142 | 2950 | 0.0 | - |
0.1162 | 3000 | 0.0 | - |
0.1181 | 3050 | 0.0 | - |
0.1200 | 3100 | 0.0 | - |
0.1220 | 3150 | 0.0 | - |
0.1239 | 3200 | 0.0 | - |
0.1259 | 3250 | 0.0 | - |
0.1278 | 3300 | 0.0 | - |
0.1297 | 3350 | 0.0 | - |
0.1317 | 3400 | 0.0 | - |
0.1336 | 3450 | 0.0 | - |
0.1355 | 3500 | 0.0 | - |
0.1375 | 3550 | 0.0 | - |
0.1394 | 3600 | 0.0 | - |
0.1413 | 3650 | 0.0 | - |
0.1433 | 3700 | 0.0 | - |
0.1452 | 3750 | 0.0 | - |
0.1472 | 3800 | 0.0 | - |
0.1491 | 3850 | 0.0 | - |
0.1510 | 3900 | 0.0 | - |
0.1530 | 3950 | 0.0 | - |
0.1549 | 4000 | 0.0 | - |
0.1568 | 4050 | 0.0 | - |
0.1588 | 4100 | 0.0 | - |
0.1607 | 4150 | 0.0 | - |
0.1626 | 4200 | 0.0 | - |
0.1646 | 4250 | 0.0 | - |
0.1665 | 4300 | 0.0 | - |
0.1685 | 4350 | 0.0 | - |
0.1704 | 4400 | 0.0 | - |
0.1723 | 4450 | 0.0 | - |
0.1743 | 4500 | 0.0 | - |
0.1762 | 4550 | 0.0 | - |
0.1781 | 4600 | 0.0 | - |
0.1801 | 4650 | 0.0 | - |
0.1820 | 4700 | 0.0 | - |
0.1839 | 4750 | 0.0 | - |
0.1859 | 4800 | 0.0 | - |
0.1878 | 4850 | 0.0 | - |
0.1898 | 4900 | 0.0 | - |
0.1917 | 4950 | 0.0 | - |
0.1936 | 5000 | 0.0 | - |
0.1956 | 5050 | 0.0 | - |
0.1975 | 5100 | 0.0 | - |
0.1994 | 5150 | 0.0 | - |
0.2014 | 5200 | 0.0 | - |
0.2033 | 5250 | 0.0 | - |
0.2052 | 5300 | 0.0 | - |
0.2072 | 5350 | 0.0 | - |
0.2091 | 5400 | 0.0 | - |
0.2111 | 5450 | 0.0 | - |
0.2130 | 5500 | 0.0 | - |
0.2149 | 5550 | 0.0 | - |
0.2169 | 5600 | 0.0 | - |
0.2188 | 5650 | 0.0 | - |
0.2207 | 5700 | 0.0 | - |
0.2227 | 5750 | 0.0 | - |
0.2246 | 5800 | 0.0 | - |
0.2265 | 5850 | 0.0 | - |
0.2285 | 5900 | 0.0 | - |
0.2304 | 5950 | 0.0 | - |
0.2324 | 6000 | 0.0 | - |
0.2343 | 6050 | 0.0 | - |
0.2362 | 6100 | 0.0 | - |
0.2382 | 6150 | 0.0 | - |
0.2401 | 6200 | 0.0 | - |
0.2420 | 6250 | 0.0 | - |
0.2440 | 6300 | 0.0 | - |
0.2459 | 6350 | 0.0 | - |
0.2478 | 6400 | 0.0 | - |
0.2498 | 6450 | 0.0 | - |
0.2517 | 6500 | 0.0 | - |
0.2536 | 6550 | 0.0 | - |
0.2556 | 6600 | 0.0 | - |
0.2575 | 6650 | 0.0 | - |
0.2595 | 6700 | 0.0 | - |
0.2614 | 6750 | 0.0 | - |
0.2633 | 6800 | 0.0 | - |
0.2653 | 6850 | 0.0 | - |
0.2672 | 6900 | 0.0 | - |
0.2691 | 6950 | 0.0 | - |
0.2711 | 7000 | 0.0 | - |
0.2730 | 7050 | 0.0 | - |
0.2749 | 7100 | 0.0 | - |
0.2769 | 7150 | 0.0 | - |
0.2788 | 7200 | 0.0 | - |
0.2808 | 7250 | 0.0 | - |
0.2827 | 7300 | 0.0 | - |
0.2846 | 7350 | 0.0 | - |
0.2866 | 7400 | 0.0 | - |
0.2885 | 7450 | 0.0 | - |
0.2904 | 7500 | 0.0 | - |
0.2924 | 7550 | 0.0 | - |
0.2943 | 7600 | 0.0 | - |
0.2962 | 7650 | 0.0 | - |
0.2982 | 7700 | 0.0 | - |
0.3001 | 7750 | 0.0 | - |
0.3021 | 7800 | 0.0 | - |
0.3040 | 7850 | 0.0 | - |
0.3059 | 7900 | 0.0 | - |
0.3079 | 7950 | 0.0 | - |
0.3098 | 8000 | 0.0 | - |
0.3117 | 8050 | 0.0 | - |
0.3137 | 8100 | 0.0 | - |
0.3156 | 8150 | 0.0 | - |
0.3175 | 8200 | 0.0 | - |
0.3195 | 8250 | 0.0 | - |
0.3214 | 8300 | 0.0 | - |
0.3234 | 8350 | 0.0 | - |
0.3253 | 8400 | 0.0 | - |
0.3272 | 8450 | 0.0 | - |
0.3292 | 8500 | 0.0 | - |
0.3311 | 8550 | 0.0 | - |
0.3330 | 8600 | 0.0 | - |
0.3350 | 8650 | 0.0 | - |
0.3369 | 8700 | 0.0 | - |
0.3388 | 8750 | 0.0 | - |
0.3408 | 8800 | 0.0 | - |
0.3427 | 8850 | 0.0 | - |
0.3447 | 8900 | 0.0 | - |
0.3466 | 8950 | 0.0 | - |
0.3485 | 9000 | 0.0 | - |
0.3505 | 9050 | 0.0 | - |
0.3524 | 9100 | 0.0 | - |
0.3543 | 9150 | 0.0 | - |
0.3563 | 9200 | 0.0 | - |
0.3582 | 9250 | 0.0 | - |
0.3601 | 9300 | 0.0 | - |
0.3621 | 9350 | 0.0 | - |
0.3640 | 9400 | 0.0 | - |
0.3660 | 9450 | 0.0 | - |
0.3679 | 9500 | 0.0 | - |
0.3698 | 9550 | 0.0 | - |
0.3718 | 9600 | 0.0 | - |
0.3737 | 9650 | 0.0 | - |
0.3756 | 9700 | 0.0 | - |
0.3776 | 9750 | 0.0 | - |
0.3795 | 9800 | 0.0 | - |
0.3814 | 9850 | 0.0 | - |
0.3834 | 9900 | 0.0 | - |
0.3853 | 9950 | 0.0 | - |
0.3873 | 10000 | 0.0 | - |
0.3892 | 10050 | 0.0 | - |
0.3911 | 10100 | 0.0 | - |
0.3931 | 10150 | 0.0 | - |
0.3950 | 10200 | 0.0 | - |
0.3969 | 10250 | 0.0 | - |
0.3989 | 10300 | 0.0 | - |
0.4008 | 10350 | 0.0 | - |
0.4027 | 10400 | 0.0 | - |
0.4047 | 10450 | 0.0 | - |
0.4066 | 10500 | 0.0 | - |
0.4086 | 10550 | 0.0 | - |
0.4105 | 10600 | 0.0 | - |
0.4124 | 10650 | 0.0 | - |
0.4144 | 10700 | 0.0 | - |
0.4163 | 10750 | 0.0 | - |
0.4182 | 10800 | 0.0 | - |
0.4202 | 10850 | 0.0 | - |
0.4221 | 10900 | 0.0 | - |
0.4240 | 10950 | 0.0 | - |
0.4260 | 11000 | 0.0 | - |
0.4279 | 11050 | 0.0 | - |
0.4298 | 11100 | 0.0 | - |
0.4318 | 11150 | 0.0 | - |
0.4337 | 11200 | 0.0 | - |
0.4357 | 11250 | 0.0 | - |
0.4376 | 11300 | 0.0 | - |
0.4395 | 11350 | 0.0 | - |
0.4415 | 11400 | 0.0 | - |
0.4434 | 11450 | 0.0 | - |
0.4453 | 11500 | 0.0 | - |
0.4473 | 11550 | 0.0 | - |
0.4492 | 11600 | 0.0 | - |
0.4511 | 11650 | 0.0 | - |
0.4531 | 11700 | 0.0 | - |
0.4550 | 11750 | 0.0 | - |
0.4570 | 11800 | 0.0 | - |
0.4589 | 11850 | 0.0109 | - |
0.4608 | 11900 | 0.0218 | - |
0.4628 | 11950 | 0.0073 | - |
0.4647 | 12000 | 0.0056 | - |
0.4666 | 12050 | 0.0037 | - |
0.4686 | 12100 | 0.0011 | - |
0.4705 | 12150 | 0.0002 | - |
0.4724 | 12200 | 0.0014 | - |
0.4744 | 12250 | 0.0031 | - |
0.4763 | 12300 | 0.0013 | - |
0.4783 | 12350 | 0.0012 | - |
0.4802 | 12400 | 0.0022 | - |
0.4821 | 12450 | 0.0003 | - |
0.4841 | 12500 | 0.0 | - |
0.4860 | 12550 | 0.0 | - |
0.4879 | 12600 | 0.0 | - |
0.4899 | 12650 | 0.0 | - |
0.4918 | 12700 | 0.0 | - |
0.4937 | 12750 | 0.0 | - |
0.4957 | 12800 | 0.0 | - |
0.4976 | 12850 | 0.0 | - |
0.4996 | 12900 | 0.0 | - |
0.5015 | 12950 | 0.0 | - |
0.5034 | 13000 | 0.0 | - |
0.5054 | 13050 | 0.0 | - |
0.5073 | 13100 | 0.0 | - |
0.5092 | 13150 | 0.0 | - |
0.5112 | 13200 | 0.0 | - |
0.5131 | 13250 | 0.0 | - |
0.5150 | 13300 | 0.0 | - |
0.5170 | 13350 | 0.0 | - |
0.5189 | 13400 | 0.0 | - |
0.5209 | 13450 | 0.0 | - |
0.5228 | 13500 | 0.0 | - |
0.5247 | 13550 | 0.0 | - |
0.5267 | 13600 | 0.0 | - |
0.5286 | 13650 | 0.0 | - |
0.5305 | 13700 | 0.0 | - |
0.5325 | 13750 | 0.0 | - |
0.5344 | 13800 | 0.0 | - |
0.5363 | 13850 | 0.0 | - |
0.5383 | 13900 | 0.0 | - |
0.5402 | 13950 | 0.0 | - |
0.5422 | 14000 | 0.0 | - |
0.5441 | 14050 | 0.0 | - |
0.5460 | 14100 | 0.0 | - |
0.5480 | 14150 | 0.0 | - |
0.5499 | 14200 | 0.0 | - |
0.5518 | 14250 | 0.0 | - |
0.5538 | 14300 | 0.0 | - |
0.5557 | 14350 | 0.0 | - |
0.5576 | 14400 | 0.0 | - |
0.5596 | 14450 | 0.0 | - |
0.5615 | 14500 | 0.0 | - |
0.5635 | 14550 | 0.0 | - |
0.5654 | 14600 | 0.0 | - |
0.5673 | 14650 | 0.0 | - |
0.5693 | 14700 | 0.0 | - |
0.5712 | 14750 | 0.0 | - |
0.5731 | 14800 | 0.0 | - |
0.5751 | 14850 | 0.0 | - |
0.5770 | 14900 | 0.0 | - |
0.5789 | 14950 | 0.0 | - |
0.5809 | 15000 | 0.0 | - |
0.5828 | 15050 | 0.0 | - |
0.5848 | 15100 | 0.0 | - |
0.5867 | 15150 | 0.0 | - |
0.5886 | 15200 | 0.0 | - |
0.5906 | 15250 | 0.0 | - |
0.5925 | 15300 | 0.0 | - |
0.5944 | 15350 | 0.0 | - |
0.5964 | 15400 | 0.0 | - |
0.5983 | 15450 | 0.0 | - |
0.6002 | 15500 | 0.0 | - |
0.6022 | 15550 | 0.0 | - |
0.6041 | 15600 | 0.0 | - |
0.6060 | 15650 | 0.0 | - |
0.6080 | 15700 | 0.0 | - |
0.6099 | 15750 | 0.0 | - |
0.6119 | 15800 | 0.0 | - |
0.6138 | 15850 | 0.0 | - |
0.6157 | 15900 | 0.0 | - |
0.6177 | 15950 | 0.0 | - |
0.6196 | 16000 | 0.0 | - |
0.6215 | 16050 | 0.0 | - |
0.6235 | 16100 | 0.0 | - |
0.6254 | 16150 | 0.0002 | - |
0.6273 | 16200 | 0.0 | - |
0.6293 | 16250 | 0.0002 | - |
0.6312 | 16300 | 0.0034 | - |
0.6332 | 16350 | 0.0062 | - |
0.6351 | 16400 | 0.0034 | - |
0.6370 | 16450 | 0.0001 | - |
0.6390 | 16500 | 0.0004 | - |
0.6409 | 16550 | 0.0 | - |
0.6428 | 16600 | 0.0 | - |
0.6448 | 16650 | 0.0 | - |
0.6467 | 16700 | 0.0 | - |
0.6486 | 16750 | 0.0 | - |
0.6506 | 16800 | 0.0 | - |
0.6525 | 16850 | 0.0 | - |
0.6545 | 16900 | 0.0 | - |
0.6564 | 16950 | 0.0 | - |
0.6583 | 17000 | 0.0 | - |
0.6603 | 17050 | 0.0 | - |
0.6622 | 17100 | 0.0 | - |
0.6641 | 17150 | 0.0 | - |
0.6661 | 17200 | 0.0 | - |
0.6680 | 17250 | 0.0 | - |
0.6699 | 17300 | 0.0 | - |
0.6719 | 17350 | 0.0 | - |
0.6738 | 17400 | 0.0 | - |
0.6758 | 17450 | 0.0 | - |
0.6777 | 17500 | 0.0 | - |
0.6796 | 17550 | 0.0 | - |
0.6816 | 17600 | 0.0 | - |
0.6835 | 17650 | 0.0 | - |
0.6854 | 17700 | 0.0 | - |
0.6874 | 17750 | 0.0 | - |
0.6893 | 17800 | 0.0 | - |
0.6912 | 17850 | 0.0 | - |
0.6932 | 17900 | 0.0 | - |
0.6951 | 17950 | 0.0 | - |
0.6971 | 18000 | 0.0 | - |
0.6990 | 18050 | 0.0 | - |
0.7009 | 18100 | 0.0 | - |
0.7029 | 18150 | 0.0 | - |
0.7048 | 18200 | 0.0 | - |
0.7067 | 18250 | 0.0 | - |
0.7087 | 18300 | 0.0 | - |
0.7106 | 18350 | 0.0 | - |
0.7125 | 18400 | 0.0 | - |
0.7145 | 18450 | 0.0 | - |
0.7164 | 18500 | 0.0 | - |
0.7184 | 18550 | 0.0 | - |
0.7203 | 18600 | 0.0 | - |
0.7222 | 18650 | 0.0 | - |
0.7242 | 18700 | 0.0 | - |
0.7261 | 18750 | 0.0 | - |
0.7280 | 18800 | 0.0 | - |
0.7300 | 18850 | 0.0 | - |
0.7319 | 18900 | 0.0 | - |
0.7338 | 18950 | 0.0 | - |
0.7358 | 19000 | 0.0 | - |
0.7377 | 19050 | 0.0 | - |
0.7397 | 19100 | 0.0 | - |
0.7416 | 19150 | 0.0 | - |
0.7435 | 19200 | 0.0 | - |
0.7455 | 19250 | 0.0 | - |
0.7474 | 19300 | 0.0 | - |
0.7493 | 19350 | 0.0 | - |
0.7513 | 19400 | 0.0 | - |
0.7532 | 19450 | 0.0 | - |
0.7551 | 19500 | 0.0 | - |
0.7571 | 19550 | 0.0 | - |
0.7590 | 19600 | 0.0 | - |
0.7609 | 19650 | 0.0 | - |
0.7629 | 19700 | 0.0 | - |
0.7648 | 19750 | 0.0 | - |
0.7668 | 19800 | 0.0 | - |
0.7687 | 19850 | 0.0 | - |
0.7706 | 19900 | 0.0 | - |
0.7726 | 19950 | 0.0 | - |
0.7745 | 20000 | 0.0 | - |
0.7764 | 20050 | 0.0 | - |
0.7784 | 20100 | 0.0 | - |
0.7803 | 20150 | 0.0 | - |
0.7822 | 20200 | 0.0 | - |
0.7842 | 20250 | 0.0 | - |
0.7861 | 20300 | 0.0 | - |
0.7881 | 20350 | 0.0 | - |
0.7900 | 20400 | 0.0 | - |
0.7919 | 20450 | 0.0 | - |
0.7939 | 20500 | 0.0 | - |
0.7958 | 20550 | 0.0 | - |
0.7977 | 20600 | 0.0 | - |
0.7997 | 20650 | 0.0 | - |
0.8016 | 20700 | 0.0 | - |
0.8035 | 20750 | 0.0 | - |
0.8055 | 20800 | 0.0 | - |
0.8074 | 20850 | 0.0 | - |
0.8094 | 20900 | 0.0 | - |
0.8113 | 20950 | 0.0 | - |
0.8132 | 21000 | 0.0 | - |
0.8152 | 21050 | 0.0 | - |
0.8171 | 21100 | 0.0 | - |
0.8190 | 21150 | 0.0 | - |
0.8210 | 21200 | 0.0 | - |
0.8229 | 21250 | 0.0 | - |
0.8248 | 21300 | 0.0 | - |
0.8268 | 21350 | 0.0 | - |
0.8287 | 21400 | 0.0 | - |
0.8307 | 21450 | 0.0 | - |
0.8326 | 21500 | 0.0 | - |
0.8345 | 21550 | 0.0 | - |
0.8365 | 21600 | 0.0 | - |
0.8384 | 21650 | 0.0 | - |
0.8403 | 21700 | 0.0 | - |
0.8423 | 21750 | 0.0 | - |
0.8442 | 21800 | 0.0 | - |
0.8461 | 21850 | 0.0 | - |
0.8481 | 21900 | 0.0 | - |
0.8500 | 21950 | 0.0 | - |
0.8520 | 22000 | 0.0 | - |
0.8539 | 22050 | 0.0 | - |
0.8558 | 22100 | 0.0 | - |
0.8578 | 22150 | 0.0 | - |
0.8597 | 22200 | 0.0 | - |
0.8616 | 22250 | 0.0 | - |
0.8636 | 22300 | 0.0 | - |
0.8655 | 22350 | 0.0 | - |
0.8674 | 22400 | 0.0 | - |
0.8694 | 22450 | 0.0 | - |
0.8713 | 22500 | 0.0 | - |
0.8733 | 22550 | 0.0 | - |
0.8752 | 22600 | 0.0 | - |
0.8771 | 22650 | 0.0 | - |
0.8791 | 22700 | 0.0 | - |
0.8810 | 22750 | 0.0 | - |
0.8829 | 22800 | 0.0 | - |
0.8849 | 22850 | 0.0 | - |
0.8868 | 22900 | 0.0 | - |
0.8887 | 22950 | 0.0 | - |
0.8907 | 23000 | 0.0 | - |
0.8926 | 23050 | 0.0 | - |
0.8946 | 23100 | 0.0 | - |
0.8965 | 23150 | 0.0 | - |
0.8984 | 23200 | 0.0 | - |
0.9004 | 23250 | 0.0 | - |
0.9023 | 23300 | 0.0 | - |
0.9042 | 23350 | 0.0 | - |
0.9062 | 23400 | 0.0 | - |
0.9081 | 23450 | 0.0 | - |
0.9100 | 23500 | 0.0 | - |
0.9120 | 23550 | 0.0 | - |
0.9139 | 23600 | 0.0 | - |
0.9159 | 23650 | 0.0 | - |
0.9178 | 23700 | 0.0 | - |
0.9197 | 23750 | 0.0 | - |
0.9217 | 23800 | 0.0 | - |
0.9236 | 23850 | 0.0 | - |
0.9255 | 23900 | 0.0 | - |
0.9275 | 23950 | 0.0 | - |
0.9294 | 24000 | 0.0 | - |
0.9313 | 24050 | 0.0 | - |
0.9333 | 24100 | 0.0 | - |
0.9352 | 24150 | 0.0 | - |
0.9371 | 24200 | 0.0 | - |
0.9391 | 24250 | 0.0 | - |
0.9410 | 24300 | 0.0 | - |
0.9430 | 24350 | 0.0 | - |
0.9449 | 24400 | 0.0 | - |
0.9468 | 24450 | 0.0 | - |
0.9488 | 24500 | 0.0 | - |
0.9507 | 24550 | 0.0 | - |
0.9526 | 24600 | 0.0 | - |
0.9546 | 24650 | 0.0 | - |
0.9565 | 24700 | 0.0 | - |
0.9584 | 24750 | 0.0 | - |
0.9604 | 24800 | 0.0 | - |
0.9623 | 24850 | 0.0 | - |
0.9643 | 24900 | 0.0 | - |
0.9662 | 24950 | 0.0 | - |
0.9681 | 25000 | 0.0 | - |
0.9701 | 25050 | 0.0 | - |
0.9720 | 25100 | 0.0 | - |
0.9739 | 25150 | 0.0 | - |
0.9759 | 25200 | 0.0 | - |
0.9778 | 25250 | 0.0 | - |
0.9797 | 25300 | 0.0 | - |
0.9817 | 25350 | 0.0 | - |
0.9836 | 25400 | 0.0 | - |
0.9856 | 25450 | 0.0 | - |
0.9875 | 25500 | 0.0 | - |
0.9894 | 25550 | 0.0 | - |
0.9914 | 25600 | 0.0 | - |
0.9933 | 25650 | 0.0 | - |
0.9952 | 25700 | 0.0 | - |
0.9972 | 25750 | 0.0 | - |
0.9991 | 25800 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.