File size: 37,723 Bytes
bbef17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '"Die jungen Klimaaktivisten haben mit ihren Protestaktionen und Straßenblockaden
    ein dringend benötigtes Gespräch über die Notwendigkeit von sofortigem Handeln
    im Kampf gegen den Klimawandel angestoßen."'
- text: Die Bundesregierung plant, den Einsatz von Wärmepumpen durch ein neues Heizungsgesetz
    zu fördern, was laut Experten einen wichtigen Schritt zur Erreichung der Klimaziele
    darstellen könnte.
- text: ' "Das Heizungsgesetz ist nichts weiter als ein weiterer Schritt in Richtung
    eines grünen Diktats, das die Bürger in die Kälte schickt."'
- text: ' Die Klima-Aktivisten von Fridays for Future und der Letzten Generation haben
    heute in mehreren Städten Proteste organisiert, um auf den Klimawandel aufmerksam
    zu machen.'
- text: ' "Die Diskussion über ein Tempolimit auf Autobahnen spaltet die Gemüter,
    während Experten auf die potenziellen Vorteile für die Verkehrssicherheit und
    den Klimaschutz hinweisen."'
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.953405017921147
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label      | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|:-----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral    | <ul><li>'Die Bundesregierung plant, bis 2024 ein sogenanntes Heizungsgesetz vorzulegen, das unter anderem eine flächendeckende Nutzung von Wärmepumpen als Teil eines umfassenden Plans zur Reduzierung der Treibhausgasemissionen im Gebäudesektor vorsehen soll.'</li><li>'"Die Bundesregierung plant, die Einführung von Wärmepumpen für Neubauten und den Austausch alter Heizungsanlagen in Bestandsgebäuden durch ein Gesetz zu forcieren, während Kritiker warnen, dass die Maßnahmen die Belastung für private Haushalte und Unternehmen erhöhen könnten."'</li><li>' Die Diskussion über ein nationales Tempolimit auf Autobahnen spaltet die Gemüter, während Experten die potenziellen Vorteile und Nachteile abwägen.'</li></ul> |
| opposed    | <ul><li>'"Millionen von Hausbesitzern sollen zu unfreiwilligen Versuchskaninchen für die teuren und unzuverlässlichen Wärmepumpen werden, ohne dass es auch nur einen Hauch von echter Wahlmöglichkeit gibt."'</li><li>'"Die von den Grünen und Linken geträumte Tempodiktatur auf unseren Autobahnen ist nichts als ein weiterer Schritt in Richtung einer überbürokratisierten, unfreien Gesellschaft."'</li><li>'"Die geplanten Vorschriften würden vielen Familien den Traum vom Eigenheim in weite Ferne rücken, da die Kosten für die Installation einer Wärmepumpe oft ein Vielfaches dessen betragen, was ein durchschnittlicher Haushalt in einem Jahr für Heizkosten ausgibt."'</li></ul>                                          |
| supportive | <ul><li>'Die Bundesregierung hat mit dem Heizungsgesetz einen wichtigen Schritt in Richtung Klimaneutralität gemacht, indem sie die Verpflichtung zur Nutzung erneuerbarer Wärmequellen bei Neubauten festlegt.'</li><li>'"Ein Tempolimit auf Autobahnen könnte nicht nur die Umweltbelastung verringern, sondern auch die Zahl der Verkehrsunfälle reduzieren und somit Menschenleben retten."'</li><li>' Eine nationale Geschwindigkeitsbegrenzung auf Autobahnen könnte nicht nur die Unfallzahlen senken, sondern auch einen wichtigen Beitrag zum Klimaschutz leisten.'</li></ul>                                                                                                                                                       |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9534   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/paraphrase-multilingual-mpnet-klimacoder_v0.8")
# Run inference
preds = model(" \"Das Heizungsgesetz ist nichts weiter als ein weiterer Schritt in Richtung eines grünen Diktats, das die Bürger in die Kälte schickt.\"")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 10  | 25.6541 | 57  |

| Label      | Training Sample Count |
|:-----------|:----------------------|
| neutral    | 321                   |
| opposed    | 391                   |
| supportive | 404                   |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step  | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0000 | 1     | 0.1985        | -               |
| 0.0019 | 50    | 0.2445        | -               |
| 0.0039 | 100   | 0.2321        | -               |
| 0.0058 | 150   | 0.2012        | -               |
| 0.0077 | 200   | 0.1614        | -               |
| 0.0097 | 250   | 0.1188        | -               |
| 0.0116 | 300   | 0.0849        | -               |
| 0.0136 | 350   | 0.0563        | -               |
| 0.0155 | 400   | 0.0374        | -               |
| 0.0174 | 450   | 0.0216        | -               |
| 0.0194 | 500   | 0.0144        | -               |
| 0.0213 | 550   | 0.0099        | -               |
| 0.0232 | 600   | 0.0061        | -               |
| 0.0252 | 650   | 0.007         | -               |
| 0.0271 | 700   | 0.0026        | -               |
| 0.0290 | 750   | 0.0017        | -               |
| 0.0310 | 800   | 0.0012        | -               |
| 0.0329 | 850   | 0.0014        | -               |
| 0.0349 | 900   | 0.002         | -               |
| 0.0368 | 950   | 0.0008        | -               |
| 0.0387 | 1000  | 0.0009        | -               |
| 0.0407 | 1050  | 0.0003        | -               |
| 0.0426 | 1100  | 0.0007        | -               |
| 0.0445 | 1150  | 0.0008        | -               |
| 0.0465 | 1200  | 0.0006        | -               |
| 0.0484 | 1250  | 0.0002        | -               |
| 0.0503 | 1300  | 0.0001        | -               |
| 0.0523 | 1350  | 0.0001        | -               |
| 0.0542 | 1400  | 0.0001        | -               |
| 0.0562 | 1450  | 0.0001        | -               |
| 0.0581 | 1500  | 0.0007        | -               |
| 0.0600 | 1550  | 0.0005        | -               |
| 0.0620 | 1600  | 0.0007        | -               |
| 0.0639 | 1650  | 0.0012        | -               |
| 0.0658 | 1700  | 0.0007        | -               |
| 0.0678 | 1750  | 0.0038        | -               |
| 0.0697 | 1800  | 0.0018        | -               |
| 0.0716 | 1850  | 0.0049        | -               |
| 0.0736 | 1900  | 0.0061        | -               |
| 0.0755 | 1950  | 0.0038        | -               |
| 0.0775 | 2000  | 0.0037        | -               |
| 0.0794 | 2050  | 0.0006        | -               |
| 0.0813 | 2100  | 0.0001        | -               |
| 0.0833 | 2150  | 0.0           | -               |
| 0.0852 | 2200  | 0.0           | -               |
| 0.0871 | 2250  | 0.0           | -               |
| 0.0891 | 2300  | 0.0           | -               |
| 0.0910 | 2350  | 0.0           | -               |
| 0.0929 | 2400  | 0.0           | -               |
| 0.0949 | 2450  | 0.0           | -               |
| 0.0968 | 2500  | 0.0           | -               |
| 0.0987 | 2550  | 0.0           | -               |
| 0.1007 | 2600  | 0.0           | -               |
| 0.1026 | 2650  | 0.0           | -               |
| 0.1046 | 2700  | 0.0           | -               |
| 0.1065 | 2750  | 0.0           | -               |
| 0.1084 | 2800  | 0.0           | -               |
| 0.1104 | 2850  | 0.0           | -               |
| 0.1123 | 2900  | 0.0           | -               |
| 0.1142 | 2950  | 0.0           | -               |
| 0.1162 | 3000  | 0.0           | -               |
| 0.1181 | 3050  | 0.0           | -               |
| 0.1200 | 3100  | 0.0           | -               |
| 0.1220 | 3150  | 0.0           | -               |
| 0.1239 | 3200  | 0.0           | -               |
| 0.1259 | 3250  | 0.0           | -               |
| 0.1278 | 3300  | 0.0           | -               |
| 0.1297 | 3350  | 0.0           | -               |
| 0.1317 | 3400  | 0.0           | -               |
| 0.1336 | 3450  | 0.0           | -               |
| 0.1355 | 3500  | 0.0           | -               |
| 0.1375 | 3550  | 0.0           | -               |
| 0.1394 | 3600  | 0.0           | -               |
| 0.1413 | 3650  | 0.0           | -               |
| 0.1433 | 3700  | 0.0           | -               |
| 0.1452 | 3750  | 0.0           | -               |
| 0.1472 | 3800  | 0.0           | -               |
| 0.1491 | 3850  | 0.0           | -               |
| 0.1510 | 3900  | 0.0           | -               |
| 0.1530 | 3950  | 0.0           | -               |
| 0.1549 | 4000  | 0.0           | -               |
| 0.1568 | 4050  | 0.0           | -               |
| 0.1588 | 4100  | 0.0           | -               |
| 0.1607 | 4150  | 0.0           | -               |
| 0.1626 | 4200  | 0.0           | -               |
| 0.1646 | 4250  | 0.0           | -               |
| 0.1665 | 4300  | 0.0           | -               |
| 0.1685 | 4350  | 0.0           | -               |
| 0.1704 | 4400  | 0.0           | -               |
| 0.1723 | 4450  | 0.0           | -               |
| 0.1743 | 4500  | 0.0           | -               |
| 0.1762 | 4550  | 0.0           | -               |
| 0.1781 | 4600  | 0.0           | -               |
| 0.1801 | 4650  | 0.0           | -               |
| 0.1820 | 4700  | 0.0           | -               |
| 0.1839 | 4750  | 0.0           | -               |
| 0.1859 | 4800  | 0.0           | -               |
| 0.1878 | 4850  | 0.0           | -               |
| 0.1898 | 4900  | 0.0           | -               |
| 0.1917 | 4950  | 0.0           | -               |
| 0.1936 | 5000  | 0.0           | -               |
| 0.1956 | 5050  | 0.0           | -               |
| 0.1975 | 5100  | 0.0           | -               |
| 0.1994 | 5150  | 0.0           | -               |
| 0.2014 | 5200  | 0.0           | -               |
| 0.2033 | 5250  | 0.0           | -               |
| 0.2052 | 5300  | 0.0           | -               |
| 0.2072 | 5350  | 0.0           | -               |
| 0.2091 | 5400  | 0.0           | -               |
| 0.2111 | 5450  | 0.0           | -               |
| 0.2130 | 5500  | 0.0           | -               |
| 0.2149 | 5550  | 0.0           | -               |
| 0.2169 | 5600  | 0.0           | -               |
| 0.2188 | 5650  | 0.0           | -               |
| 0.2207 | 5700  | 0.0           | -               |
| 0.2227 | 5750  | 0.0           | -               |
| 0.2246 | 5800  | 0.0           | -               |
| 0.2265 | 5850  | 0.0           | -               |
| 0.2285 | 5900  | 0.0           | -               |
| 0.2304 | 5950  | 0.0           | -               |
| 0.2324 | 6000  | 0.0           | -               |
| 0.2343 | 6050  | 0.0           | -               |
| 0.2362 | 6100  | 0.0           | -               |
| 0.2382 | 6150  | 0.0           | -               |
| 0.2401 | 6200  | 0.0           | -               |
| 0.2420 | 6250  | 0.0           | -               |
| 0.2440 | 6300  | 0.0           | -               |
| 0.2459 | 6350  | 0.0           | -               |
| 0.2478 | 6400  | 0.0           | -               |
| 0.2498 | 6450  | 0.0           | -               |
| 0.2517 | 6500  | 0.0           | -               |
| 0.2536 | 6550  | 0.0           | -               |
| 0.2556 | 6600  | 0.0           | -               |
| 0.2575 | 6650  | 0.0           | -               |
| 0.2595 | 6700  | 0.0           | -               |
| 0.2614 | 6750  | 0.0           | -               |
| 0.2633 | 6800  | 0.0           | -               |
| 0.2653 | 6850  | 0.0           | -               |
| 0.2672 | 6900  | 0.0           | -               |
| 0.2691 | 6950  | 0.0           | -               |
| 0.2711 | 7000  | 0.0           | -               |
| 0.2730 | 7050  | 0.0           | -               |
| 0.2749 | 7100  | 0.0           | -               |
| 0.2769 | 7150  | 0.0           | -               |
| 0.2788 | 7200  | 0.0           | -               |
| 0.2808 | 7250  | 0.0           | -               |
| 0.2827 | 7300  | 0.0           | -               |
| 0.2846 | 7350  | 0.0           | -               |
| 0.2866 | 7400  | 0.0           | -               |
| 0.2885 | 7450  | 0.0           | -               |
| 0.2904 | 7500  | 0.0           | -               |
| 0.2924 | 7550  | 0.0           | -               |
| 0.2943 | 7600  | 0.0           | -               |
| 0.2962 | 7650  | 0.0           | -               |
| 0.2982 | 7700  | 0.0           | -               |
| 0.3001 | 7750  | 0.0           | -               |
| 0.3021 | 7800  | 0.0           | -               |
| 0.3040 | 7850  | 0.0           | -               |
| 0.3059 | 7900  | 0.0           | -               |
| 0.3079 | 7950  | 0.0           | -               |
| 0.3098 | 8000  | 0.0           | -               |
| 0.3117 | 8050  | 0.0           | -               |
| 0.3137 | 8100  | 0.0           | -               |
| 0.3156 | 8150  | 0.0           | -               |
| 0.3175 | 8200  | 0.0           | -               |
| 0.3195 | 8250  | 0.0           | -               |
| 0.3214 | 8300  | 0.0           | -               |
| 0.3234 | 8350  | 0.0           | -               |
| 0.3253 | 8400  | 0.0           | -               |
| 0.3272 | 8450  | 0.0           | -               |
| 0.3292 | 8500  | 0.0           | -               |
| 0.3311 | 8550  | 0.0           | -               |
| 0.3330 | 8600  | 0.0           | -               |
| 0.3350 | 8650  | 0.0           | -               |
| 0.3369 | 8700  | 0.0           | -               |
| 0.3388 | 8750  | 0.0           | -               |
| 0.3408 | 8800  | 0.0           | -               |
| 0.3427 | 8850  | 0.0           | -               |
| 0.3447 | 8900  | 0.0           | -               |
| 0.3466 | 8950  | 0.0           | -               |
| 0.3485 | 9000  | 0.0           | -               |
| 0.3505 | 9050  | 0.0           | -               |
| 0.3524 | 9100  | 0.0           | -               |
| 0.3543 | 9150  | 0.0           | -               |
| 0.3563 | 9200  | 0.0           | -               |
| 0.3582 | 9250  | 0.0           | -               |
| 0.3601 | 9300  | 0.0           | -               |
| 0.3621 | 9350  | 0.0           | -               |
| 0.3640 | 9400  | 0.0           | -               |
| 0.3660 | 9450  | 0.0           | -               |
| 0.3679 | 9500  | 0.0           | -               |
| 0.3698 | 9550  | 0.0           | -               |
| 0.3718 | 9600  | 0.0           | -               |
| 0.3737 | 9650  | 0.0           | -               |
| 0.3756 | 9700  | 0.0           | -               |
| 0.3776 | 9750  | 0.0           | -               |
| 0.3795 | 9800  | 0.0           | -               |
| 0.3814 | 9850  | 0.0           | -               |
| 0.3834 | 9900  | 0.0           | -               |
| 0.3853 | 9950  | 0.0           | -               |
| 0.3873 | 10000 | 0.0           | -               |
| 0.3892 | 10050 | 0.0           | -               |
| 0.3911 | 10100 | 0.0           | -               |
| 0.3931 | 10150 | 0.0           | -               |
| 0.3950 | 10200 | 0.0           | -               |
| 0.3969 | 10250 | 0.0           | -               |
| 0.3989 | 10300 | 0.0           | -               |
| 0.4008 | 10350 | 0.0           | -               |
| 0.4027 | 10400 | 0.0           | -               |
| 0.4047 | 10450 | 0.0           | -               |
| 0.4066 | 10500 | 0.0           | -               |
| 0.4086 | 10550 | 0.0           | -               |
| 0.4105 | 10600 | 0.0           | -               |
| 0.4124 | 10650 | 0.0           | -               |
| 0.4144 | 10700 | 0.0           | -               |
| 0.4163 | 10750 | 0.0           | -               |
| 0.4182 | 10800 | 0.0           | -               |
| 0.4202 | 10850 | 0.0           | -               |
| 0.4221 | 10900 | 0.0           | -               |
| 0.4240 | 10950 | 0.0           | -               |
| 0.4260 | 11000 | 0.0           | -               |
| 0.4279 | 11050 | 0.0           | -               |
| 0.4298 | 11100 | 0.0           | -               |
| 0.4318 | 11150 | 0.0           | -               |
| 0.4337 | 11200 | 0.0           | -               |
| 0.4357 | 11250 | 0.0           | -               |
| 0.4376 | 11300 | 0.0           | -               |
| 0.4395 | 11350 | 0.0           | -               |
| 0.4415 | 11400 | 0.0           | -               |
| 0.4434 | 11450 | 0.0           | -               |
| 0.4453 | 11500 | 0.0           | -               |
| 0.4473 | 11550 | 0.0           | -               |
| 0.4492 | 11600 | 0.0           | -               |
| 0.4511 | 11650 | 0.0           | -               |
| 0.4531 | 11700 | 0.0           | -               |
| 0.4550 | 11750 | 0.0           | -               |
| 0.4570 | 11800 | 0.0           | -               |
| 0.4589 | 11850 | 0.0109        | -               |
| 0.4608 | 11900 | 0.0218        | -               |
| 0.4628 | 11950 | 0.0073        | -               |
| 0.4647 | 12000 | 0.0056        | -               |
| 0.4666 | 12050 | 0.0037        | -               |
| 0.4686 | 12100 | 0.0011        | -               |
| 0.4705 | 12150 | 0.0002        | -               |
| 0.4724 | 12200 | 0.0014        | -               |
| 0.4744 | 12250 | 0.0031        | -               |
| 0.4763 | 12300 | 0.0013        | -               |
| 0.4783 | 12350 | 0.0012        | -               |
| 0.4802 | 12400 | 0.0022        | -               |
| 0.4821 | 12450 | 0.0003        | -               |
| 0.4841 | 12500 | 0.0           | -               |
| 0.4860 | 12550 | 0.0           | -               |
| 0.4879 | 12600 | 0.0           | -               |
| 0.4899 | 12650 | 0.0           | -               |
| 0.4918 | 12700 | 0.0           | -               |
| 0.4937 | 12750 | 0.0           | -               |
| 0.4957 | 12800 | 0.0           | -               |
| 0.4976 | 12850 | 0.0           | -               |
| 0.4996 | 12900 | 0.0           | -               |
| 0.5015 | 12950 | 0.0           | -               |
| 0.5034 | 13000 | 0.0           | -               |
| 0.5054 | 13050 | 0.0           | -               |
| 0.5073 | 13100 | 0.0           | -               |
| 0.5092 | 13150 | 0.0           | -               |
| 0.5112 | 13200 | 0.0           | -               |
| 0.5131 | 13250 | 0.0           | -               |
| 0.5150 | 13300 | 0.0           | -               |
| 0.5170 | 13350 | 0.0           | -               |
| 0.5189 | 13400 | 0.0           | -               |
| 0.5209 | 13450 | 0.0           | -               |
| 0.5228 | 13500 | 0.0           | -               |
| 0.5247 | 13550 | 0.0           | -               |
| 0.5267 | 13600 | 0.0           | -               |
| 0.5286 | 13650 | 0.0           | -               |
| 0.5305 | 13700 | 0.0           | -               |
| 0.5325 | 13750 | 0.0           | -               |
| 0.5344 | 13800 | 0.0           | -               |
| 0.5363 | 13850 | 0.0           | -               |
| 0.5383 | 13900 | 0.0           | -               |
| 0.5402 | 13950 | 0.0           | -               |
| 0.5422 | 14000 | 0.0           | -               |
| 0.5441 | 14050 | 0.0           | -               |
| 0.5460 | 14100 | 0.0           | -               |
| 0.5480 | 14150 | 0.0           | -               |
| 0.5499 | 14200 | 0.0           | -               |
| 0.5518 | 14250 | 0.0           | -               |
| 0.5538 | 14300 | 0.0           | -               |
| 0.5557 | 14350 | 0.0           | -               |
| 0.5576 | 14400 | 0.0           | -               |
| 0.5596 | 14450 | 0.0           | -               |
| 0.5615 | 14500 | 0.0           | -               |
| 0.5635 | 14550 | 0.0           | -               |
| 0.5654 | 14600 | 0.0           | -               |
| 0.5673 | 14650 | 0.0           | -               |
| 0.5693 | 14700 | 0.0           | -               |
| 0.5712 | 14750 | 0.0           | -               |
| 0.5731 | 14800 | 0.0           | -               |
| 0.5751 | 14850 | 0.0           | -               |
| 0.5770 | 14900 | 0.0           | -               |
| 0.5789 | 14950 | 0.0           | -               |
| 0.5809 | 15000 | 0.0           | -               |
| 0.5828 | 15050 | 0.0           | -               |
| 0.5848 | 15100 | 0.0           | -               |
| 0.5867 | 15150 | 0.0           | -               |
| 0.5886 | 15200 | 0.0           | -               |
| 0.5906 | 15250 | 0.0           | -               |
| 0.5925 | 15300 | 0.0           | -               |
| 0.5944 | 15350 | 0.0           | -               |
| 0.5964 | 15400 | 0.0           | -               |
| 0.5983 | 15450 | 0.0           | -               |
| 0.6002 | 15500 | 0.0           | -               |
| 0.6022 | 15550 | 0.0           | -               |
| 0.6041 | 15600 | 0.0           | -               |
| 0.6060 | 15650 | 0.0           | -               |
| 0.6080 | 15700 | 0.0           | -               |
| 0.6099 | 15750 | 0.0           | -               |
| 0.6119 | 15800 | 0.0           | -               |
| 0.6138 | 15850 | 0.0           | -               |
| 0.6157 | 15900 | 0.0           | -               |
| 0.6177 | 15950 | 0.0           | -               |
| 0.6196 | 16000 | 0.0           | -               |
| 0.6215 | 16050 | 0.0           | -               |
| 0.6235 | 16100 | 0.0           | -               |
| 0.6254 | 16150 | 0.0002        | -               |
| 0.6273 | 16200 | 0.0           | -               |
| 0.6293 | 16250 | 0.0002        | -               |
| 0.6312 | 16300 | 0.0034        | -               |
| 0.6332 | 16350 | 0.0062        | -               |
| 0.6351 | 16400 | 0.0034        | -               |
| 0.6370 | 16450 | 0.0001        | -               |
| 0.6390 | 16500 | 0.0004        | -               |
| 0.6409 | 16550 | 0.0           | -               |
| 0.6428 | 16600 | 0.0           | -               |
| 0.6448 | 16650 | 0.0           | -               |
| 0.6467 | 16700 | 0.0           | -               |
| 0.6486 | 16750 | 0.0           | -               |
| 0.6506 | 16800 | 0.0           | -               |
| 0.6525 | 16850 | 0.0           | -               |
| 0.6545 | 16900 | 0.0           | -               |
| 0.6564 | 16950 | 0.0           | -               |
| 0.6583 | 17000 | 0.0           | -               |
| 0.6603 | 17050 | 0.0           | -               |
| 0.6622 | 17100 | 0.0           | -               |
| 0.6641 | 17150 | 0.0           | -               |
| 0.6661 | 17200 | 0.0           | -               |
| 0.6680 | 17250 | 0.0           | -               |
| 0.6699 | 17300 | 0.0           | -               |
| 0.6719 | 17350 | 0.0           | -               |
| 0.6738 | 17400 | 0.0           | -               |
| 0.6758 | 17450 | 0.0           | -               |
| 0.6777 | 17500 | 0.0           | -               |
| 0.6796 | 17550 | 0.0           | -               |
| 0.6816 | 17600 | 0.0           | -               |
| 0.6835 | 17650 | 0.0           | -               |
| 0.6854 | 17700 | 0.0           | -               |
| 0.6874 | 17750 | 0.0           | -               |
| 0.6893 | 17800 | 0.0           | -               |
| 0.6912 | 17850 | 0.0           | -               |
| 0.6932 | 17900 | 0.0           | -               |
| 0.6951 | 17950 | 0.0           | -               |
| 0.6971 | 18000 | 0.0           | -               |
| 0.6990 | 18050 | 0.0           | -               |
| 0.7009 | 18100 | 0.0           | -               |
| 0.7029 | 18150 | 0.0           | -               |
| 0.7048 | 18200 | 0.0           | -               |
| 0.7067 | 18250 | 0.0           | -               |
| 0.7087 | 18300 | 0.0           | -               |
| 0.7106 | 18350 | 0.0           | -               |
| 0.7125 | 18400 | 0.0           | -               |
| 0.7145 | 18450 | 0.0           | -               |
| 0.7164 | 18500 | 0.0           | -               |
| 0.7184 | 18550 | 0.0           | -               |
| 0.7203 | 18600 | 0.0           | -               |
| 0.7222 | 18650 | 0.0           | -               |
| 0.7242 | 18700 | 0.0           | -               |
| 0.7261 | 18750 | 0.0           | -               |
| 0.7280 | 18800 | 0.0           | -               |
| 0.7300 | 18850 | 0.0           | -               |
| 0.7319 | 18900 | 0.0           | -               |
| 0.7338 | 18950 | 0.0           | -               |
| 0.7358 | 19000 | 0.0           | -               |
| 0.7377 | 19050 | 0.0           | -               |
| 0.7397 | 19100 | 0.0           | -               |
| 0.7416 | 19150 | 0.0           | -               |
| 0.7435 | 19200 | 0.0           | -               |
| 0.7455 | 19250 | 0.0           | -               |
| 0.7474 | 19300 | 0.0           | -               |
| 0.7493 | 19350 | 0.0           | -               |
| 0.7513 | 19400 | 0.0           | -               |
| 0.7532 | 19450 | 0.0           | -               |
| 0.7551 | 19500 | 0.0           | -               |
| 0.7571 | 19550 | 0.0           | -               |
| 0.7590 | 19600 | 0.0           | -               |
| 0.7609 | 19650 | 0.0           | -               |
| 0.7629 | 19700 | 0.0           | -               |
| 0.7648 | 19750 | 0.0           | -               |
| 0.7668 | 19800 | 0.0           | -               |
| 0.7687 | 19850 | 0.0           | -               |
| 0.7706 | 19900 | 0.0           | -               |
| 0.7726 | 19950 | 0.0           | -               |
| 0.7745 | 20000 | 0.0           | -               |
| 0.7764 | 20050 | 0.0           | -               |
| 0.7784 | 20100 | 0.0           | -               |
| 0.7803 | 20150 | 0.0           | -               |
| 0.7822 | 20200 | 0.0           | -               |
| 0.7842 | 20250 | 0.0           | -               |
| 0.7861 | 20300 | 0.0           | -               |
| 0.7881 | 20350 | 0.0           | -               |
| 0.7900 | 20400 | 0.0           | -               |
| 0.7919 | 20450 | 0.0           | -               |
| 0.7939 | 20500 | 0.0           | -               |
| 0.7958 | 20550 | 0.0           | -               |
| 0.7977 | 20600 | 0.0           | -               |
| 0.7997 | 20650 | 0.0           | -               |
| 0.8016 | 20700 | 0.0           | -               |
| 0.8035 | 20750 | 0.0           | -               |
| 0.8055 | 20800 | 0.0           | -               |
| 0.8074 | 20850 | 0.0           | -               |
| 0.8094 | 20900 | 0.0           | -               |
| 0.8113 | 20950 | 0.0           | -               |
| 0.8132 | 21000 | 0.0           | -               |
| 0.8152 | 21050 | 0.0           | -               |
| 0.8171 | 21100 | 0.0           | -               |
| 0.8190 | 21150 | 0.0           | -               |
| 0.8210 | 21200 | 0.0           | -               |
| 0.8229 | 21250 | 0.0           | -               |
| 0.8248 | 21300 | 0.0           | -               |
| 0.8268 | 21350 | 0.0           | -               |
| 0.8287 | 21400 | 0.0           | -               |
| 0.8307 | 21450 | 0.0           | -               |
| 0.8326 | 21500 | 0.0           | -               |
| 0.8345 | 21550 | 0.0           | -               |
| 0.8365 | 21600 | 0.0           | -               |
| 0.8384 | 21650 | 0.0           | -               |
| 0.8403 | 21700 | 0.0           | -               |
| 0.8423 | 21750 | 0.0           | -               |
| 0.8442 | 21800 | 0.0           | -               |
| 0.8461 | 21850 | 0.0           | -               |
| 0.8481 | 21900 | 0.0           | -               |
| 0.8500 | 21950 | 0.0           | -               |
| 0.8520 | 22000 | 0.0           | -               |
| 0.8539 | 22050 | 0.0           | -               |
| 0.8558 | 22100 | 0.0           | -               |
| 0.8578 | 22150 | 0.0           | -               |
| 0.8597 | 22200 | 0.0           | -               |
| 0.8616 | 22250 | 0.0           | -               |
| 0.8636 | 22300 | 0.0           | -               |
| 0.8655 | 22350 | 0.0           | -               |
| 0.8674 | 22400 | 0.0           | -               |
| 0.8694 | 22450 | 0.0           | -               |
| 0.8713 | 22500 | 0.0           | -               |
| 0.8733 | 22550 | 0.0           | -               |
| 0.8752 | 22600 | 0.0           | -               |
| 0.8771 | 22650 | 0.0           | -               |
| 0.8791 | 22700 | 0.0           | -               |
| 0.8810 | 22750 | 0.0           | -               |
| 0.8829 | 22800 | 0.0           | -               |
| 0.8849 | 22850 | 0.0           | -               |
| 0.8868 | 22900 | 0.0           | -               |
| 0.8887 | 22950 | 0.0           | -               |
| 0.8907 | 23000 | 0.0           | -               |
| 0.8926 | 23050 | 0.0           | -               |
| 0.8946 | 23100 | 0.0           | -               |
| 0.8965 | 23150 | 0.0           | -               |
| 0.8984 | 23200 | 0.0           | -               |
| 0.9004 | 23250 | 0.0           | -               |
| 0.9023 | 23300 | 0.0           | -               |
| 0.9042 | 23350 | 0.0           | -               |
| 0.9062 | 23400 | 0.0           | -               |
| 0.9081 | 23450 | 0.0           | -               |
| 0.9100 | 23500 | 0.0           | -               |
| 0.9120 | 23550 | 0.0           | -               |
| 0.9139 | 23600 | 0.0           | -               |
| 0.9159 | 23650 | 0.0           | -               |
| 0.9178 | 23700 | 0.0           | -               |
| 0.9197 | 23750 | 0.0           | -               |
| 0.9217 | 23800 | 0.0           | -               |
| 0.9236 | 23850 | 0.0           | -               |
| 0.9255 | 23900 | 0.0           | -               |
| 0.9275 | 23950 | 0.0           | -               |
| 0.9294 | 24000 | 0.0           | -               |
| 0.9313 | 24050 | 0.0           | -               |
| 0.9333 | 24100 | 0.0           | -               |
| 0.9352 | 24150 | 0.0           | -               |
| 0.9371 | 24200 | 0.0           | -               |
| 0.9391 | 24250 | 0.0           | -               |
| 0.9410 | 24300 | 0.0           | -               |
| 0.9430 | 24350 | 0.0           | -               |
| 0.9449 | 24400 | 0.0           | -               |
| 0.9468 | 24450 | 0.0           | -               |
| 0.9488 | 24500 | 0.0           | -               |
| 0.9507 | 24550 | 0.0           | -               |
| 0.9526 | 24600 | 0.0           | -               |
| 0.9546 | 24650 | 0.0           | -               |
| 0.9565 | 24700 | 0.0           | -               |
| 0.9584 | 24750 | 0.0           | -               |
| 0.9604 | 24800 | 0.0           | -               |
| 0.9623 | 24850 | 0.0           | -               |
| 0.9643 | 24900 | 0.0           | -               |
| 0.9662 | 24950 | 0.0           | -               |
| 0.9681 | 25000 | 0.0           | -               |
| 0.9701 | 25050 | 0.0           | -               |
| 0.9720 | 25100 | 0.0           | -               |
| 0.9739 | 25150 | 0.0           | -               |
| 0.9759 | 25200 | 0.0           | -               |
| 0.9778 | 25250 | 0.0           | -               |
| 0.9797 | 25300 | 0.0           | -               |
| 0.9817 | 25350 | 0.0           | -               |
| 0.9836 | 25400 | 0.0           | -               |
| 0.9856 | 25450 | 0.0           | -               |
| 0.9875 | 25500 | 0.0           | -               |
| 0.9894 | 25550 | 0.0           | -               |
| 0.9914 | 25600 | 0.0           | -               |
| 0.9933 | 25650 | 0.0           | -               |
| 0.9952 | 25700 | 0.0           | -               |
| 0.9972 | 25750 | 0.0           | -               |
| 0.9991 | 25800 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->