metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: sms-spam-weighted
results: []
sms-spam-weighted
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2336
- Accuracy: 0.989
- F1: 0.9575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.0009 | 1.0 | 125 | 0.1323 | 0.987 | 0.9494 |
0.0034 | 2.0 | 250 | 0.1401 | 0.988 | 0.9531 |
0.0001 | 3.0 | 375 | 0.2087 | 0.991 | 0.9647 |
0.0001 | 4.0 | 500 | 0.2121 | 0.988 | 0.9538 |
0.0001 | 5.0 | 625 | 0.2129 | 0.988 | 0.9538 |
0.0 | 6.0 | 750 | 0.2242 | 0.99 | 0.9612 |
0.0 | 7.0 | 875 | 0.2285 | 0.989 | 0.9575 |
0.0 | 8.0 | 1000 | 0.2314 | 0.989 | 0.9575 |
0.0 | 9.0 | 1125 | 0.2330 | 0.989 | 0.9575 |
0.0 | 10.0 | 1250 | 0.2336 | 0.989 | 0.9575 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3