|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-destination-inference |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-destination-inference |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6668 |
|
- Rouge1: 25.6235 |
|
- Rouge2: 0.0 |
|
- Rougel: 25.6064 |
|
- Rougelsum: 25.6064 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 2.6932 | 1.0 | 2927 | 2.0668 | 19.9009 | 0.0 | 19.9009 | 19.8838 | |
|
| 2.1793 | 2.0 | 5854 | 1.8923 | 22.2668 | 0.0 | 22.2583 | 22.2412 | |
|
| 2.0209 | 3.0 | 8781 | 1.8088 | 23.1807 | 0.0 | 23.1893 | 23.1978 | |
|
| 1.9254 | 4.0 | 11708 | 1.7439 | 24.5815 | 0.0 | 24.5815 | 24.5815 | |
|
| 1.8585 | 5.0 | 14635 | 1.7105 | 24.7865 | 0.0 | 24.7865 | 24.7865 | |
|
| 1.814 | 6.0 | 17562 | 1.6863 | 25.2989 | 0.0 | 25.316 | 25.2989 | |
|
| 1.781 | 7.0 | 20489 | 1.6730 | 25.3844 | 0.0 | 25.3844 | 25.3502 | |
|
| 1.7679 | 8.0 | 23416 | 1.6668 | 25.6235 | 0.0 | 25.6064 | 25.6064 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|