bart_samsum / README.md
chamdentimem's picture
End of training
7face83 verified
|
raw
history blame
1.64 kB
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_samsum
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6585
- Rouge1: 51.0558
- Rouge2: 25.6433
- Rougel: 34.149
- Rougelsum: 44.0828
- Gen Len: 62.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:|
| 2.6315 | 1.0 | 1841 | 2.6585 | 51.0558 | 25.6433 | 34.149 | 44.0828 | 62.0 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2