See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a96f2a38573ff471_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a96f2a38573ff471_train_data.json
type:
field_instruction: name
field_output: birth_city
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: chauhoang/ff9c485a-7d4e-4cda-8bc1-3ea557c50c7b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a96f2a38573ff471_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff9c485a-7d4e-4cda-8bc1-3ea557c50c7b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff9c485a-7d4e-4cda-8bc1-3ea557c50c7b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
ff9c485a-7d4e-4cda-8bc1-3ea557c50c7b
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.1586
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 9.0144 |
7.6338 | 0.0028 | 10 | 6.3055 |
4.869 | 0.0057 | 20 | 4.3973 |
3.6046 | 0.0085 | 30 | 3.5392 |
3.3271 | 0.0113 | 40 | 3.2007 |
2.9414 | 0.0141 | 50 | 3.1586 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for chauhoang/ff9c485a-7d4e-4cda-8bc1-3ea557c50c7b
Base model
TinyLlama/TinyLlama_v1.1