|
# Stanford Alpaca |
|
|
|
This is a replica of Alpaca by Stanford' tatsu |
|
|
|
Trained using the original instructions with a minor modification in FSDP mode |
|
|
|
# Other versions: |
|
13B: https://huggingface.co/chavinlo/alpaca-13b |
|
|
|
13B -> GPT4 : https://huggingface.co/chavinlo/gpt4-x-alpaca |
|
|
|
## Compute Used |
|
Trained on 4xA100s for 6H |
|
Donated by redmond.ai |
|
|
|
NO LORA HAS BEEN USED, this is a natively-finetuned model, hence "alpaca-native" |
|
|
|
If you are interested on more llama-based models, you can check out my profile or search for other models at https://huggingface.co/models?other=llama |
|
|
|
This (MIGHT) be a quantized version of this model, but be careful: https://boards.4channel.org/g/thread/92173062#p92182396 |
|
|
|
CONFIGURATION (default except fsdp): |
|
|
|
```shell |
|
torchrun --nproc_per_node=4 --master_port=3045 train.py \ |
|
--model_name_or_path /workspace/llama-7b-hf \ |
|
--data_path ./alpaca_data.json \ |
|
--bf16 True \ |
|
--output_dir /workspace/output \ |
|
--num_train_epochs 3 \ |
|
--per_device_train_batch_size 4 \ |
|
--per_device_eval_batch_size 4 \ |
|
--gradient_accumulation_steps 8 \ |
|
--evaluation_strategy "no" \ |
|
--save_strategy "steps" \ |
|
--save_steps 200 \ |
|
--save_total_limit 1 \ |
|
--learning_rate 2e-5 \ |
|
--weight_decay 0. \ |
|
--warmup_ratio 0.03 \ |
|
--lr_scheduler_type "cosine" \ |
|
--logging_steps 1 \ |
|
--fsdp "shard_grad_op auto_wrap" \ |
|
--fsdp_transformer_layer_cls_to_wrap 'LLaMADecoderLayer' \ |
|
--tf32 True --report_to="wandb" |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chavinlo__alpaca-native) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 41.96 | |
|
| ARC (25-shot) | 52.3 | |
|
| HellaSwag (10-shot) | 77.09 | |
|
| MMLU (5-shot) | 41.6 | |
|
| TruthfulQA (0-shot) | 37.58 | |
|
| Winogrande (5-shot) | 69.46 | |
|
| GSM8K (5-shot) | 1.44 | |
|
| DROP (3-shot) | 14.23 | |
|
|