Description

This repo contains GGUF format model files for MediaTek-Research/Breeze-7B-32k-Instruct-v1_0.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Provided files

Name Quant method Bits Size Use case
Breeze-7B-32k-Instruct-v1_0-Q4_K_M.gguf Q4_K_M 4 4.54 GB medium, balanced quality - recommended
Breeze-7B-32k-Instruct-v1_0-Q5_0.gguf Q5_0 5 5.18 GB legacy; medium, balanced quality - prefer using Q4_K_M
Breeze-7B-32k-Instruct-v1_0-Q5_K_M.gguf Q5_K_M 5 5.32 GB large, very low quality loss - recommended
Breeze-7B-32k-Instruct-v1_0-Q5_K_S.gguf Q5_K_S 5 5.18 GB large, low quality loss - recommended
Breeze-7B-32k-Instruct-v1_0-Q6_K.gguf Q6_K 6 6.14 GB very large, extremely low quality loss

Original model card


Model Card for MediaTek Research Breeze-7B-32k-Instruct-v1_0

MediaTek Research Breeze-7B (hereinafter referred to as Breeze-7B) is a language model family that builds on top of Mistral-7B, specifically intended for Traditional Chinese use.

Breeze-7B-Base is the base model for the Breeze-7B series. It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.

Breeze-7B-Instruct derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.

Breeze-7B-32k-Base is extended from the base model with more data, base change, and the disabling of the sliding window. Roughly speaking, that is equivalent to 44k Traditional Chinese characters.

Breeze-7B-32k-Instruct derives from the base model Breeze-7B-32k-Base, making the resulting model amenable to be used as-is for commonly seen tasks.

Practicality-wise:

  • Breeze-7B-Base expands the original vocabulary with additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See Inference Performance.]
  • Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
  • Breeze-7B-32k-Instruct can perform tasks at a document level (For Chinese, 20 ~ 40 pages).

A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.

Features

  • Breeze-7B-32k-Base-v1_0

    • Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
    • 32k-token context length
  • Breeze-7B-32k-Instruct-v1_0

    • Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
    • 32k-token context length
    • Multi-turn dialogue (without special handling for harmfulness)

Model Details

  • Breeze-7B-32k-Base-v1_0
    • Pretrained from: Breeze-7B-Base
    • Model type: Causal decoder-only transformer language model
    • Language: English and Traditional Chinese (zh-tw)
  • Breeze-7B-32k-Instruct-v1_0
    • Finetuned from: Breeze-7B-32k-Base
    • Model type: Causal decoder-only transformer language model
    • Language: English and Traditional Chinese (zh-tw)

Long-context Performance

Needle-in-a-haystack Performance

We use the passkey retrieval task to test the model's ability to attend to different various depths in a given sequence. A key in placed within a long context distracting document for the model to retrieve. The key position is binned into 16 bins, and there are 20 testcases for each bin. Breeze-7B-32k-Base clears the tasks with 90+% accuracy, shown in the figure below. Needle-in-a-haystack Performance

Long-DRCD Performance

Model/Performance(EM) DRCD DRCD-16k DRCD-32k
Breeze-7B-32k-Instruct-v1_0 76.9 54.82 44.26
Breeze-7B-32k-Base-v1_0 79.73 69.68 61.55
Breeze-7B-Base-v1_0 80.61 21.79 15.29

Short-Benchmark Performance

Model/Performance(EM) TMMLU+ MMLU TABLE MT-Bench-tw MT-Bench
Breeze-7B-32k-Instruct-v1_0 41.37 61.34 34 5.8 7.4
Breeze-7B-Instruct-v1_0 42.67 62.73 39.58 6.0 7.4

Use in Transformers

First, install direct dependencies:

pip install transformers torch accelerate

Flash-attention2 is strongly recommended for long context scenarios.

pip install packaging ninja
pip install flash-attn

Then load the model in transformers:

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-32k-Instruct-v1_0/")
>>> model = AutoModelForCausalLM.from_pretrained(
>>>    "MediaTek-Research/Breeze-7B-32k-Instruct-v1_0",
...    device_map="auto",
...    torch_dtype=torch.bfloat16,
...    attn_implementation="flash_attention_2"
... )
>>> chat = [
...   {"role": "user", "content": "你好,請問你可以完成什麼任務?"},
...   {"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
...   {"role": "user", "content": "太棒了!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
"<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan.   [INST] 你好,請問你可以完成什麼任務? [/INST] 你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。 [INST] 太棒了! [/INST] "
# Tokenized results
# ['▁', '你好', ',', '請問', '你', '可以', '完成', '什麼', '任務', '?']
# ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
# ['▁', '太', '棒', '了', '!']

Citation

@article{MediaTek-Research2024breeze7b,
      title={Breeze-7B Technical Report}, 
      author={Chan-Jan Hsu and Chang-Le Liu and Feng-Ting Liao and Po-Chun Hsu and Yi-Chang Chen and Da-Shan Shiu},
      year={2024},
      eprint={2403.02712},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
35
GGUF
Model size
7.49B params
Architecture
llama

4-bit

5-bit

6-bit

Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for chienweichang/Breeze-7B-32k-Instruct-v1_0-GGUF

Quantized
(3)
this model