electramed-small-SPECIES800-ner
This model is a fine-tuned version of giacomomiolo/electramed_small_scivocab on the species_800 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0513
- Precision: 0.6221
- Recall: 0.7471
- F1: 0.6789
- Accuracy: 0.9831
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0536 | 1.0 | 359 | 0.0971 | 0.6138 | 0.5554 | 0.5832 | 0.9795 |
0.0309 | 2.0 | 718 | 0.0692 | 0.6175 | 0.6063 | 0.6118 | 0.9808 |
0.0563 | 3.0 | 1077 | 0.0582 | 0.6424 | 0.6910 | 0.6658 | 0.9819 |
0.0442 | 4.0 | 1436 | 0.0553 | 0.5900 | 0.7523 | 0.6613 | 0.9814 |
0.0069 | 5.0 | 1795 | 0.0511 | 0.6291 | 0.7497 | 0.6841 | 0.9827 |
0.0141 | 6.0 | 2154 | 0.0505 | 0.6579 | 0.7471 | 0.6996 | 0.9837 |
0.0052 | 7.0 | 2513 | 0.0513 | 0.5965 | 0.7458 | 0.6628 | 0.9826 |
0.0573 | 8.0 | 2872 | 0.0509 | 0.6140 | 0.7445 | 0.6730 | 0.9828 |
0.0203 | 9.0 | 3231 | 0.0516 | 0.6118 | 0.7458 | 0.6722 | 0.9830 |
0.0101 | 10.0 | 3590 | 0.0513 | 0.6221 | 0.7471 | 0.6789 | 0.9831 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train chintagunta85/electramed-small-SPECIES800-ner
Evaluation results
- Precision on species_800self-reported0.622
- Recall on species_800self-reported0.747
- F1 on species_800self-reported0.679
- Accuracy on species_800self-reported0.983