|
--- |
|
language: fon |
|
datasets: |
|
- fon_dataset |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
- hf-asr-leaderboard |
|
license: apache-2.0 |
|
model-index: |
|
- name: Fon XLSR Wav2Vec2 Large 53 |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: fon |
|
type: fon_dataset |
|
args: fon |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 14.97 |
|
--- |
|
# Wav2Vec2-Large-XLSR-53-Fon |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [Fon (or Fongbe)](https://en.wikipedia.org/wiki/Fon_language) using the [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data). |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import json |
|
import random |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
|
|
#Load test_dataset from saved files in folder |
|
from datasets import load_dataset, load_metric |
|
|
|
#for test |
|
for root, dirs, files in os.walk(test/): |
|
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") |
|
|
|
#Remove unnecessary chars |
|
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]' |
|
def remove_special_characters(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " |
|
return batch |
|
|
|
test_dataset = test_dataset.map(remove_special_characters) |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") |
|
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") |
|
|
|
#No need for resampling because audio dataset already at 16kHz |
|
#resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"]=speech_array.squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on our unique Fon test data. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
for root, dirs, files in os.walk(test/): |
|
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") |
|
|
|
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]' |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " |
|
return batch |
|
|
|
test_dataset = test_dataset.map(remove_special_characters) |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") |
|
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") |
|
model.to("cuda") |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = speech_array[0].numpy() |
|
batch["sampling_rate"] = sampling_rate |
|
batch["target_text"] = batch["sentence"] |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
#Evaluation on test dataset |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
|
|
``` |
|
|
|
**Test Result**: 14.97 % |
|
|
|
## Training |
|
|
|
The [Fon dataset](https://github.com/laleye/pyFongbe/tree/master/data) was split into `train`(8235 samples), `validation`(1107 samples), and `test`(1061 samples). |
|
|
|
The script used for training can be found [here](https://colab.research.google.com/drive/11l6qhJCYnPTG1TQZ8f3EvKB9z12TQi4g?usp=sharing) |
|
|
|
|
|
# Collaborators on this project |
|
|
|
- Chris C. Emezue ([Twitter](https://twitter.com/ChrisEmezue))|([email protected]) |
|
- Bonaventure F.P. Dossou (HuggingFace Username: [bonadossou](https://huggingface.co/bonadossou))|([Twitter](https://twitter.com/bonadossou))|([email protected]) |
|
|
|
## This is a joint project continuing our research on [OkwuGbé: End-to-End Speech Recognition for Fon and Igbo](https://arxiv.org/abs/2103.07762) |