license: apache-2.0
base_model: chunwoolee0/ke_t5_base_bongsoo_ko_en
tags:
- generated_from_trainer
model-index:
- name: ke_t5_base_bongsoo_ko_en_epoch2
results: []
ke_t5_base_bongsoo_ko_en_epoch2
This model is a fine-tuned version of chunwoolee0/ke_t5_base_bongsoo_ko_en on bongsoo/news_news_talk_en_ko dataset.
Model description
KE-T5 is a pretrained-model of t5 text-to-text transfer transformers using the Korean and English corpus developed by KETI (νκ΅μ μμ°κ΅¬μ). The vocabulary used by KE-T5 consists of 64,000 sub-word tokens and was created using Google's sentencepiece. The Sentencepiece model was trained to cover 99.95% of a 30GB corpus with an approximate 7:3 mix of Korean and English.
Intended uses & limitations
Translation from Korean to English : epoch = 2
>>> from transformers import pipeline
>>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko')
>>> translator("λλ μ΅κ΄μ μΌλ‘ μ μ¬μμ¬ νμ μ°μ±
μ νλ€.")
[{'translation_text': 'I habitally walk after lunch.'}]
>>> translator("μ΄ κ°μ’λ νκΉ
νμ΄μ€κ° λ§λ κ±°μΌ.")
[{'translation_text': 'This class was created by Huggface.'}]
>>> translator("μ€λμ λ¦κ² μΌμ΄λ¬λ€.")
[{'translation_text': 'This day I woke up earlier.'}]
Training and evaluation data
train : 360000 rows test: 20000 rows validation 20000 rows
Training procedure
Use chunwoolee0/ke_t5_base_bongsoo_ko_en as a pretrained model checkpoint. max_token_length is set to 64 for stable training. learing rate is reduced from 0.0005 for epoch 1 to 0.00002 here.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
No log | 1.0 | 5625 | 1.6646 | 12.5566 |
TrainOutput(global_step=5625, training_loss=1.8157017361111112, metrics={'train_runtime': 11137.6996, 'train_samples_per_second': 32.323, 'train_steps_per_second': 0.505, 'total_flos': 2.056934156746752e+16, 'train_loss': 1.8157017361111112, 'epoch': 1.0})
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3