klue_ner_bert_model / README.md
chunwoolee0's picture
update model card README.md
4185d2c
|
raw
history blame
2.19 kB
metadata
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
  - generated_from_trainer
datasets:
  - klue
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: klue_ner_bert_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: klue
          type: klue
          config: ner
          split: validation
          args: ner
        metrics:
          - name: Precision
            type: precision
            value: 0.883861132284665
          - name: Recall
            type: recall
            value: 0.8966608084358524
          - name: F1
            type: f1
            value: 0.890214963707426
          - name: Accuracy
            type: accuracy
            value: 0.9781297871646948

klue_ner_bert_model

This model is a fine-tuned version of klue/bert-base on the klue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0843
  • Precision: 0.8839
  • Recall: 0.8967
  • F1: 0.8902
  • Accuracy: 0.9781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0638 1.0 2626 0.0807 0.8623 0.8702 0.8662 0.9747
0.0402 2.0 5252 0.0780 0.8756 0.8896 0.8825 0.9770
0.025 3.0 7878 0.0843 0.8839 0.8967 0.8902 0.9781

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3