|
--- |
|
base_model: klue/roberta-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- klue |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: klue_ner_roberta_model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: klue |
|
type: klue |
|
config: ner |
|
split: validation |
|
args: ner |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9545986426398315 |
|
- name: Recall |
|
type: recall |
|
value: 0.9557169634489222 |
|
- name: F1 |
|
type: f1 |
|
value: 0.955157475705421 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9883703228112445 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# klue_ner_roberta_model |
|
|
|
This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0487 |
|
- Precision: 0.9546 |
|
- Recall: 0.9557 |
|
- F1: 0.9552 |
|
- Accuracy: 0.9884 |
|
|
|
## Model description |
|
|
|
Pretrained RoBERTa Model on Korean Language. See [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details. |
|
|
|
## Intended uses & limitations |
|
|
|
## How to use |
|
|
|
_NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer. (`AutoTokenizer` will load `BertTokenizer`) |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained("klue/roberta-base") |
|
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base") |
|
``` |
|
|
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0449 | 1.0 | 2626 | 0.0601 | 0.9361 | 0.9176 | 0.9267 | 0.9830 | |
|
| 0.0262 | 2.0 | 5252 | 0.0469 | 0.9484 | 0.9510 | 0.9497 | 0.9874 | |
|
| 0.0144 | 3.0 | 7878 | 0.0487 | 0.9546 | 0.9557 | 0.9552 | 0.9884 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|