|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- klue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: klue_nli_roberta_base_model |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: klue |
|
type: klue |
|
config: nli |
|
split: validation |
|
args: nli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8653333333333333 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# klue_nli_roberta_base_model |
|
|
|
This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) |
|
on the klue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6867 |
|
- Accuracy: 0.8653 |
|
|
|
## Model description |
|
|
|
Pretrained RoBERTa Model on Korean Language. See Github and Paper for more details. |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
## How to use |
|
*NOTE*: Use BertTokenizer instead of RobertaTokenizer. (AutoTokenizer will load BertTokenizer) |
|
|
|
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
```python |
|
model = AutoModel.from_pretrained("klue/roberta-base") |
|
tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base") |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.5988 | 1.0 | 782 | 0.4378 | 0.8363 | |
|
| 0.2753 | 2.0 | 1564 | 0.4169 | 0.851 | |
|
| 0.1735 | 3.0 | 2346 | 0.5267 | 0.8607 | |
|
| 0.0956 | 4.0 | 3128 | 0.6275 | 0.8683 | |
|
| 0.0708 | 5.0 | 3910 | 0.6867 | 0.8653 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|