ciriatico's picture
ciriatico/dodfminer_lite-ner_bertimbau-extrato_contrato
d940678 verified
metadata
library_name: transformers
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: e3_lr2e-05
    results: []

e3_lr2e-05

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0753
  • Precision: 0.9611
  • Recall: 0.9778
  • F1: 0.9694
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4195 0.2564 50 0.2315 0.8642 0.8460 0.8550 0.9499
0.2396 0.5128 100 0.1778 0.8971 0.8970 0.8970 0.9517
0.1717 0.7692 150 0.1330 0.9033 0.9323 0.9176 0.9639
0.1249 1.0256 200 0.1090 0.9369 0.9554 0.9460 0.9728
0.0929 1.2821 250 0.1066 0.9397 0.9630 0.9512 0.9739
0.0954 1.5385 300 0.0831 0.9498 0.9670 0.9583 0.9788
0.0858 1.7949 350 0.0844 0.9459 0.9727 0.9591 0.9776
0.0715 2.0513 400 0.0868 0.9512 0.9766 0.9637 0.9796
0.056 2.3077 450 0.0789 0.9616 0.9774 0.9695 0.9818
0.0592 2.5641 500 0.0768 0.9614 0.9783 0.9698 0.9817
0.0607 2.8205 550 0.0753 0.9611 0.9778 0.9694 0.9817

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.20.0