YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
lat_mean = 39.95177162396873
lat_std = 0.0006333008487451197
lon_mean = -75.19143495078883
lon_std = 0.0006184167829766685
# TO RUN:
from huggingface_hub import hf_hub_download
import torchvision.models as models
import torch
import torch.nn as nn
# Specify the repository and the filename of the model you want to load
repo_id = "cis-5190-final-fall24/ImageToGPSproject_model" # Replace with your repo name
filename = "final_model.pth"
class ResNetGPSModel(nn.Module):
def __init__(self):
super(ResNetGPSModel, self).__init__()
self.resnet = models.resnet101() # Updated for PyTorch >=0.13
self.resnet.fc = nn.Sequential(
nn.Dropout(0.4), # Dropout for regularization
nn.Linear(self.resnet.fc.in_features, 2) # Latitude and Longitude
)
def forward(self, x):
return self.resnet(x)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNetGPSModel().to(device)
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
# Load the model using torch
state_dict = torch.load(model_path)
model.load_state_dict(state_dict)
model.eval() # Set the model to evaluation mode