|
# Information about the Dataset |
|
|
|
**Mean Latitude**: 39.95156391970743 |
|
|
|
**Latitude Std**: 0.0007633062105681285 |
|
|
|
**Mean Longitude**: -75.19148737056214 |
|
|
|
**Longitude Std**: 0.0007871346840888362 |
|
|
|
# Model definition |
|
|
|
```python |
|
class ConvNeXtGPSPredictor(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self, model_name="facebook/convnext-tiny-224", num_outputs=2): |
|
super(ConvNeXtGPSPredictor, self).__init__() |
|
|
|
# Load the ConvNeXt backbone from Hugging Face |
|
self.backbone = AutoModel.from_pretrained(model_name) |
|
|
|
# Get feature dimension from the backbone's output |
|
config = AutoConfig.from_pretrained(model_name) |
|
feature_dim = config.hidden_sizes[-1] # Corrected attribute for ConvNeXt |
|
|
|
# Define the GPS regression head |
|
self.gps_head = nn.Sequential( |
|
nn.AdaptiveAvgPool2d((1, 1)), # Pool to a single spatial dimension |
|
nn.Flatten(), # Flatten the tensor |
|
nn.LayerNorm(feature_dim), |
|
nn.Linear(feature_dim, num_outputs) # Directly map to 2 GPS coordinates |
|
) |
|
|
|
def forward(self, x): |
|
# Extract features from the backbone |
|
features = self.backbone(x).last_hidden_state |
|
|
|
# Pass through the GPS head |
|
coords = self.gps_head(features) |
|
return coords |
|
|
|
|
|
def save_model(self, save_path): |
|
self.save_pretrained(save_path) |
|
|
|
def push_model(self, repo_name): |
|
self.push_to_hub(repo_name) |
|
``` |
|
|
|
# How to load the model |
|
|
|
You can simply load the model by |
|
```python |
|
model = ConvNeXtGPSPredictor.from_pretrained("cis519/convNext-GPSPredictor") |
|
``` |