clapAI/modernBERT-base-multilingual-sentiment

Introduction

modernBERT-base-multilingual-sentiment is a multilingual sentiment classification model, part of the Multilingual-Sentiment collection.

The model is fine-tuned from answerdotai/ModernBERT-base using the multilingual sentiment dataset clapAI/MultiLingualSentiment.

Model supports multilingual sentiment classification across 16+ languages, including English, Vietnamese, Chinese, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Arabic, and more.

Evaluation & Performance

After fine-tuning, the best model is loaded and evaluated on the test dataset from clapAI/MultiLingualSentiment

Model Pretrained Model Parameters F1-score
modernBERT-base-multilingual-sentiment ModernBERT-base 150M 80.16
modernBERT-large-multilingual-sentiment ModernBERT-large 396M 81.4
roberta-base-multilingual-sentiment XLM-roberta-base 278M 81.8
roberta-large-multilingual-sentiment XLM-roberta-large 560M 82.6

How to use

Requirements

Since transformers only supports the ModernBERT architecture from version 4.48.0.dev0, use the following command to get the required version:

pip install "git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1" --upgrade

Install FlashAttention to accelerate inference performance

pip install flash-attn==2.7.2.post1

Quick start

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_id = "clapAI/modernBERT-base-multilingual-sentiment"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id, torch_dtype=torch.float16)

model.to(device)
model.eval()


# Retrieve labels from the model's configuration
id2label = model.config.id2label

texts = [
    # English
    {
        "text": "I absolutely love the new design of this app!",
        "label": "positive"
    },
    {
        "text": "The customer service was disappointing.",
        "label": "negative"
    },
    # Arabic
    {
        "text": "هذا المنتج رائع للغاية!",
        "label": "positive"
    },
    {
        "text": "الخدمة كانت سيئة للغاية.",
        "label": "negative"
    },
    # German
    {
        "text": "Ich bin sehr zufrieden mit dem Kauf.",
        "label": "positive"
    },
    {
        "text": "Die Lieferung war eine Katastrophe.",
        "label": "negative"
    },
    # Spanish
    {
        "text": "Este es el mejor libro que he leído.",
        "label": "positive"
    },
    {
        "text": "El producto llegó roto y no funciona.",
        "label": "negative"
    },
    # French
    {
        "text": "J'adore ce restaurant, la nourriture est délicieuse!",
        "label": "positive"
    },
    {
        "text": "Le service était très lent et désagréable.",
        "label": "negative"
    },
    # Indonesian
    {
        "text": "Saya sangat senang dengan pelayanan ini.",
        "label": "positive"
    },
    {
        "text": "Makanannya benar-benar tidak enak.",
        "label": "negative"
    },
    # Japanese
    {
        "text": "この製品は本当に素晴らしいです!",
        "label": "positive"
    },
    {
        "text": "サービスがひどかったです。",
        "label": "negative"
    },
    # Korean
    {
        "text": "이 제품을 정말 좋아해요!",
        "label": "positive"
    },
    {
        "text": "고객 서비스가 정말 실망스러웠어요.",
        "label": "negative"
    },
    # Russian
    {
        "text": "Этот фильм просто потрясающий!",
        "label": "positive"
    },
    {
        "text": "Качество было ужасным.",
        "label": "negative"
    },
    # Vietnamese
    {
        "text": "Tôi thực sự yêu thích sản phẩm này!",
        "label": "positive"
    },
    {
        "text": "Dịch vụ khách hàng thật tệ.",
        "label": "negative"
    },
    # Chinese
    {
        "text": "我非常喜欢这款产品!",
        "label": "positive"
    },
    {
        "text": "质量真的很差。",
        "label": "negative"
    }
]

for item in texts:
    text = item["text"]
    label = item["label"]

    inputs = tokenizer(text, return_tensors="pt").to(device)

    # Perform inference in inference mode
    with torch.inference_mode():
        outputs = model(**inputs)
        predictions = outputs.logits.argmax(dim=-1)
    print(f"Text: {text} | Label: {label} | Prediction: {id2label[predictions.item()]}")

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

learning_rate: 5e-05
train_batch_size: 512
eval_batch_size: 512
seed: 42
distributed_type: multi-GPU
num_devices: 2
gradient_accumulation_steps: 2
total_train_batch_size: 2048
total_eval_batch_size: 1024
optimizer:
  type: adamw_torch_fused
  betas: [ 0.9, 0.999 ]
  epsilon: 1e-08
  optimizer_args: "No additional optimizer arguments"
lr_scheduler:
  type: cosine
  warmup_ratio: 0.01
num_epochs: 5.0
mixed_precision_training: Native AMP

Framework versions

transformers==4.48.0.dev0
torch==2.4.0+cu121
datasets==3.2.0
tokenizers==0.21.0
flash-attn==2.7.2.post1

Citation

If you find our project helpful, please star our repo and cite our work. Thanks!

@misc{modernBERT-base-multilingual-sentiment,
      title={modernBERT-base-multilingual-sentiment: A Multilingual Sentiment Classification Model},
      author={clapAI},
      howpublished={\url{https://huggingface.co/clapAI/modernBERT-base-multilingual-sentiment}},
      year={2025},
}
Downloads last month
276
Safetensors
Model size
150M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for clapAI/modernBERT-base-multilingual-sentiment

Finetuned
(153)
this model

Dataset used to train clapAI/modernBERT-base-multilingual-sentiment