YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

You can use transformer library and load model for conditional generation and expect those tokens or use monoT5 implementation from BEIR.

prompt = Query: {query} Document: {document} Relevant:

Model returns tokens if relevant or not: token_false='▁fałsz', token_true='▁prawda'

MonoT5 implementation is included in BEIR benchmark(https://github.com/beir-cellar/beir):

from beir.reranking.models import MonoT5
from beir.reranking import Rerank

queries = YOUR_QUERIES
corpus = YOUR_CORPUS
queries = {query['id'] : query['text'] for query in queries}
corpus = {doc['id']: {'title': doc['title'] , 'text': doc['text']} for doc in corpus}


cross_encoder_model = MonoT5(model_path, use_amp=False, token_false='▁fałsz', token_true='▁prawda')
reranker = Rerank(cross_encoder_model, batch_size=100)

rerank_results = reranker.rerank(corpus, queries, results, top_k=100)
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.