See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-68m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- bef8dee527c04d00_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/bef8dee527c04d00_train_data.json
type:
field_input: body
field_instruction: text
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: clarxus/a7345ed8-d6be-4a7b-8745-0cda2acfca95
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/bef8dee527c04d00_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 843f0bdf-49df-4ed5-a542-560b4f97faca
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 843f0bdf-49df-4ed5-a542-560b4f97faca
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a7345ed8-d6be-4a7b-8745-0cda2acfca95
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.8998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 4.8435 |
4.8799 | 0.0053 | 9 | 4.7842 |
4.4937 | 0.0107 | 18 | 4.5287 |
4.3515 | 0.0160 | 27 | 4.3535 |
4.2833 | 0.0214 | 36 | 4.2226 |
4.1153 | 0.0267 | 45 | 4.1057 |
4.0262 | 0.0321 | 54 | 4.0221 |
4.146 | 0.0374 | 63 | 3.9635 |
3.8951 | 0.0428 | 72 | 3.9272 |
4.0629 | 0.0481 | 81 | 3.9080 |
3.9731 | 0.0535 | 90 | 3.9011 |
3.8988 | 0.0588 | 99 | 3.8998 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for clarxus/a7345ed8-d6be-4a7b-8745-0cda2acfca95
Base model
JackFram/llama-68m