See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f771d3b50b7cbdc6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f771d3b50b7cbdc6_train_data.json
type:
field_input: traj_0_response
field_instruction: prompt
field_output: traj_0_solution_0
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: clarxus/c7ab2427-81e8-4fa7-95a1-febc62fa7678
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/f771d3b50b7cbdc6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 128af46a-a45c-4a15-9c89-60a97b3cde1b
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 128af46a-a45c-4a15-9c89-60a97b3cde1b
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
c7ab2427-81e8-4fa7-95a1-febc62fa7678
This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 0.9472 |
0.9511 | 0.0049 | 9 | 0.8332 |
0.7029 | 0.0098 | 18 | 0.6833 |
0.5646 | 0.0148 | 27 | 0.6439 |
0.6343 | 0.0197 | 36 | 0.6269 |
0.6461 | 0.0246 | 45 | 0.6173 |
0.6737 | 0.0295 | 54 | 0.6108 |
0.5936 | 0.0344 | 63 | 0.6063 |
0.5878 | 0.0394 | 72 | 0.6035 |
0.5845 | 0.0443 | 81 | 0.6018 |
0.6083 | 0.0492 | 90 | 0.6010 |
0.6462 | 0.0541 | 99 | 0.6008 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for clarxus/c7ab2427-81e8-4fa7-95a1-febc62fa7678
Base model
Korabbit/llama-2-ko-7b