Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen1.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 2ba9fe8bb34145e7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2ba9fe8bb34145e7_train_data.json
  type:
    field_input: genre
    field_instruction: premise
    field_output: hypothesis
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: clarxus/cbebf523-0842-45eb-9e17-512ed9d25cf9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/2ba9fe8bb34145e7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: a19c1880-aeac-4066-9377-d92ea8d4386a
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: a19c1880-aeac-4066-9377-d92ea8d4386a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

cbebf523-0842-45eb-9e17-512ed9d25cf9

This model is a fine-tuned version of Qwen/Qwen1.5-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8447

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 3.0755
2.9992 0.0007 9 2.8091
2.2559 0.0015 18 2.1556
1.9053 0.0022 27 1.9718
1.8025 0.0029 36 1.9067
1.7893 0.0037 45 1.8848
1.8401 0.0044 54 1.8674
1.8888 0.0051 63 1.8559
1.8951 0.0059 72 1.8496
1.9286 0.0066 81 1.8465
1.8533 0.0074 90 1.8449
1.8273 0.0081 99 1.8447

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for clarxus/cbebf523-0842-45eb-9e17-512ed9d25cf9

Base model

Qwen/Qwen1.5-7B
Adapter
(6387)
this model