bcms-bertic-frenk-hate
Text classification model based on classla/bcms-bertic
and fine-tuned on the FRENK dataset comprising of LGBT and migrant hatespeech. Only the Croatian subset of the data was used for fine-tuning and the dataset has been relabeled for binary classification (offensive or acceptable).
Fine-tuning hyperparameters
Fine-tuning was performed with simpletransformers
. Beforehand a brief hyperparameter optimisation was performed and the presumed optimal hyperparameters are:
model_args = {
"num_train_epochs": 12,
"learning_rate": 1e-5,
"train_batch_size": 74}
Performance
The same pipeline was run with two other transformer models and fasttext
for comparison. Accuracy and macro F1 score were recorded for each of the 6 fine-tuning sessions and post festum analyzed.
model | average accuracy | average macro F1 |
---|---|---|
bcms-bertic-frenk-hate | 0.8313 | 0.8219 |
EMBEDDIA/crosloengual-bert | 0.8054 | 0.796 |
xlm-roberta-base | 0.7175 | 0.7049 |
fasttext | 0.771 | 0.754 |
From recorded accuracies and macro F1 scores p-values were also calculated:
Comparison with crosloengual-bert
:
test | accuracy p-value | macro F1 p-value |
---|---|---|
Wilcoxon | 0.00781 | 0.00781 |
Mann Whithney | 0.00108 | 0.00108 |
Student t-test | 2.43e-10 | 1.27e-10 |
Comparison with xlm-roberta-base
:
test | accuracy p-value | macro F1 p-value |
---|---|---|
Wilcoxon | 0.00781 | 0.00781 |
Mann Whithney | 0.00107 | 0.00108 |
Student t-test | 4.83e-11 | 5.61e-11 |
Use examples
from simpletransformers.classification import ClassificationModel
model = ClassificationModel(
"bert", "5roop/bcms-bertic-frenk-hate", use_cuda=True,
)
predictions, logit_output = model.predict(['Ne odbacujem da će RH primiti još migranata iz Afganistana, no neće biti novog vala',
"Potpredsjednik Vlade i ministar branitelja Tomo Medved komentirao je Vladine planove za zakonsku zabranu pozdrava 'za dom spremni' "])
predictions
### Output:
### array([0, 0])
Citation
If you use the model, please cite the following paper on which the original model is based:
@inproceedings{ljubesic-lauc-2021-bertic,
title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian",
author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5",
pages = "37--42",
}
and the dataset used for fine-tuning:
@misc{ljubešić2019frenk,
title={The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English},
author={Nikola Ljubešić and Darja Fišer and Tomaž Erjavec},
year={2019},
eprint={1906.02045},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1906.02045}
}
- Downloads last month
- 36