|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- mlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-mlsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: mlsum |
|
type: mlsum |
|
config: fr |
|
split: validation |
|
args: fr |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 23.8523 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-mlsum |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1938 |
|
- Rouge1: 23.8523 |
|
- Rouge2: 11.7959 |
|
- Rougel: 21.1838 |
|
- Rougelsum: 21.2463 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 5.6087 | 1.0 | 1005 | 2.4269 | 29.6042 | 15.5378 | 25.5964 | 25.6503 | |
|
| 3.4099 | 2.0 | 2010 | 2.2734 | 23.8963 | 12.2351 | 21.4806 | 21.4861 | |
|
| 3.169 | 3.0 | 3015 | 2.2310 | 26.7408 | 13.7129 | 23.7543 | 23.8443 | |
|
| 3.0327 | 4.0 | 4020 | 2.2084 | 23.2971 | 11.5675 | 20.911 | 21.0564 | |
|
| 2.9777 | 5.0 | 5025 | 2.1938 | 23.8523 | 11.7959 | 21.1838 | 21.2463 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|